廣東工商職業技術大學《視覺形象識別設計》2023-2024學年第一學期期末試卷_第1頁
廣東工商職業技術大學《視覺形象識別設計》2023-2024學年第一學期期末試卷_第2頁
廣東工商職業技術大學《視覺形象識別設計》2023-2024學年第一學期期末試卷_第3頁
廣東工商職業技術大學《視覺形象識別設計》2023-2024學年第一學期期末試卷_第4頁
廣東工商職業技術大學《視覺形象識別設計》2023-2024學年第一學期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共3頁廣東工商職業技術大學《視覺形象識別設計》

2023-2024學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、圖像分類是計算機視覺的常見任務之一。假設要對大量的自然風景圖片進行分類,如山脈、森林、海灘等。在進行圖像分類時,以下關于數據增強的方法,哪一項可能不太有效?()A.對圖像進行隨機裁剪和旋轉,增加數據的多樣性B.改變圖像的色彩和對比度,模擬不同的拍攝條件C.直接復制原圖像,增加數據量D.給圖像添加隨機噪聲,增強模型的魯棒性2、當利用計算機視覺進行圖像超分辨率重建任務,將低分辨率圖像恢復為高分辨率圖像,以下哪種深度學習模型可能在重建效果上表現出色?()A.SRCNNB.ESPCNC.DRCND.以上都是3、計算機視覺中的行人重識別是在不同攝像頭拍攝的圖像或視頻中識別出特定的行人。以下關于行人重識別的敘述,不正確的是()A.行人重識別需要提取具有判別性的行人特征,克服視角、光照和姿態的變化B.深度學習方法在行人重識別任務中取得了顯著的性能提升C.行人重識別在智能安防、視頻監控和人員追蹤等領域有重要的應用D.行人重識別技術已經能夠在大規模數據集上達到100%的準確率4、在計算機視覺的動作識別任務中,區分不同的人體動作。假設要從一段視頻中識別出一個人是在跑步還是走路,以下關于動作識別方法的描述,正確的是:()A.基于骨架信息的動作識別方法對人體姿態的微小變化不敏感B.只考慮動作的空間特征就能準確識別不同的動作C.融合時空特征和深度學習模型能夠提升動作識別的準確率D.動作識別的結果不受視頻拍攝角度和背景干擾的影響5、在計算機視覺的人臉識別任務中,需要應對姿態、表情和光照等變化。假設要構建一個能夠在不同環境下準確識別人臉的系統,以下哪種人臉識別方法在處理這些變化時具有更高的準確性和魯棒性?()A.基于特征點的人臉識別B.基于模板匹配的人臉識別C.基于深度學習的人臉識別D.基于幾何形狀的人臉識別6、計算機視覺中的光流估計是計算圖像中像素的運動信息。以下關于光流估計的敘述,不正確的是()A.光流估計可以用于視頻中的運動分析、目標跟蹤和動作識別等任務B.基于深度學習的光流估計方法在精度和速度上都有了很大的提升C.光流估計只對勻速運動的物體有效,對于復雜的非勻速運動估計不準確D.光流估計的結果可以為后續的計算機視覺任務提供重要的運動線索7、計算機視覺中的場景理解是理解圖像或視頻中的場景內容和語義信息。假設要理解一張城市街道的圖像,以下關于場景理解方法的描述,哪一項是不正確的?()A.可以通過對象檢測、語義分割和場景分類等任務來實現場景理解B.結合上下文信息和先驗知識能夠提高場景理解的準確性C.深度學習模型能夠學習場景中的全局特征和關系,實現對場景的深入理解D.場景理解可以在沒有任何先驗知識和上下文信息的情況下,準確地推斷出場景的語義8、計算機視覺中的動作識別是對視頻中人物或物體的動作進行分類和理解。假設要識別一段舞蹈視頻中的各種舞蹈動作,同時要考慮動作的速度、幅度和風格的變化。以下哪種動作識別方法在處理這種復雜的動作模式時表現更好?()A.基于手工特征的動作識別B.基于時空興趣點的動作識別C.基于深度學習的時空卷積網絡D.基于隱馬爾可夫模型的動作識別9、在計算機視覺的圖像檢索任務中,需要根據用戶提供的示例圖像從大規模圖像數據庫中找到相似的圖像。假設要構建一個高效的圖像搜索引擎,能夠快速準確地返回相關圖像。以下哪種圖像檢索方法在處理大規模數據時性能更優?()A.基于內容的圖像檢索B.基于文本標注的圖像檢索C.基于哈希編碼的圖像檢索D.基于深度學習特征的圖像檢索10、在計算機視覺的應用于自動駕駛領域,需要實時檢測道路上的交通標志和標線。假設車輛在高速行駛中,以下哪種技術能夠快速準確地檢測到各種交通標志,并且對光照變化和遮擋具有較強的魯棒性?()A.基于顏色和形狀特征的檢測方法B.基于深度學習的檢測方法,結合多尺度特征C.基于邊緣檢測和形態學操作的方法D.基于模板匹配和特征點匹配的方法11、在計算機視覺的三維重建任務中,假設要從一組二維圖像恢復出物體的三維結構。以下關于三維重建方法的描述,正確的是:()A.基于立體視覺的方法需要多視角的圖像,并且對相機的標定精度要求不高B.結構光方法能夠快速準確地獲取物體表面的三維信息,但對環境光敏感C.從運動中恢復結構(SfM)方法只適用于靜態場景,無法處理動態物體D.所有的三維重建方法都能夠生成高精度的、完整的物體三維模型12、在計算機視覺的圖像分割任務中,假設要將一張醫學圖像中的病變區域精確地分割出來,以便醫生進行診斷和治療。這張醫學圖像可能存在噪聲、模糊和不均勻的灰度分布。以下哪種圖像分割方法在處理這種復雜情況時可能更具優勢?()A.基于閾值的分割方法,根據像素值設定閾值進行分割B.基于區域生長的分割方法,從種子點開始逐漸擴展區域C.基于深度學習的語義分割算法,如U-NetD.隨機分割圖像,然后根據后續分析進行調整13、在計算機視覺的應用中,人臉識別技術受到廣泛關注。假設一個人臉識別系統正在進行身份驗證,以下關于人臉識別的描述,正確的是:()A.只依靠面部的幾何形狀信息就能實現準確的人臉識別B.光照變化和面部表情對人臉識別的準確率沒有影響C.結合深度學習模型和多模態信息,如紅外圖像,可以提高人臉識別的性能和可靠性D.人臉識別系統不需要考慮數據的隱私和安全問題14、在計算機視覺的遙感圖像分析中,假設要從衛星遙感圖像中提取土地利用信息,以下哪種技術可能對區分不同類型的土地覆蓋有幫助?()A.高光譜分析B.紋理分析C.形狀分析D.以上都有可能15、計算機視覺中的姿態估計是指確定物體在三維空間中的位置和方向。以下關于姿態估計的說法,錯誤的是()A.姿態估計可以通過單目相機、雙目相機或深度相機來實現B.基于深度學習的方法在姿態估計任務中表現出了較高的精度C.姿態估計在機器人操作、增強現實等領域有著重要的應用價值D.姿態估計的結果總是非常精確,不受物體形狀和遮擋的影響16、在計算機視覺的圖像修復任務中,假設圖像中有大面積的損壞或缺失區域,以下哪種方法可能更依賴于對圖像全局結構的理解?()A.基于紋理合成的方法B.基于擴散的方法C.基于深度學習的方法D.基于樣例的方法17、在計算機視覺的場景理解任務中,假設要理解一個室內場景的布局和功能,例如判斷是辦公室還是客廳。以下哪種信息對于準確理解場景是至關重要的?()A.物體的類別和位置B.圖像的顏色分布C.圖像的拍攝角度D.隨機選擇圖像中的部分區域進行分析18、在圖像配準任務中,需要將不同時間、不同視角或不同傳感器獲取的圖像進行對齊。假設我們要將一張衛星圖像與一張航拍圖像進行配準,以下哪個因素對于配準的準確性影響最大?()A.圖像的分辨率差異B.圖像的旋轉和平移C.圖像的光照條件D.圖像中的噪聲19、計算機視覺在無人駕駛中的應用至關重要。假設要通過車載攝像頭識別道路上的交通標志和標線,以下關于應對復雜環境變化的策略,哪一項是不正確的?()A.利用多模態數據融合,如結合攝像頭和激光雷達的信息B.定期更新模型,適應新出現的交通標志和標線C.只依靠單一攝像頭的圖像信息,不考慮其他傳感器D.對不同天氣和光照條件下的數據進行增強訓練20、計算機視覺在虛擬現實(VR)和增強現實(AR)中有重要作用。假設要在VR環境中實現真實感的物體交互,以下哪種技術可能對準確感知物體的位置和姿態至關重要?()A.立體視覺B.光場成像C.結構光D.運動捕捉21、當利用計算機視覺技術對醫學影像(如X光、CT等)進行分析,輔助醫生進行疾病診斷時,需要從大量的圖像數據中提取有價值的特征。以下哪種特征提取方法在醫學影像分析中可能具有較高的應用價值?()A.基于形狀的特征提取B.基于紋理的特征提取C.基于深度學習的自動特征學習D.基于顏色的特征提取22、在計算機視覺中,圖像增強技術用于改善圖像的質量。以下關于圖像增強的描述,不正確的是()A.圖像增強可以包括對比度增強、銳化、去噪等操作B.圖像增強的目的是使圖像更適合人類視覺觀察或后續的處理任務C.過度的圖像增強可能會導致圖像失真或引入噪聲D.圖像增強只對低質量的圖像有效果,對于高質量的圖像沒有必要進行增強23、計算機視覺在虛擬現實(VR)和增強現實(AR)中有著重要的應用。假設要在VR游戲中實現真實的場景交互。以下關于計算機視覺在VR/AR中的描述,哪一項是不正確的?()A.可以通過對用戶的動作和姿態進行識別,實現自然的交互操作B.能夠將虛擬物體與真實場景進行準確的融合和匹配C.計算機視覺技術可以提高VR/AR體驗的沉浸感和真實感D.VR/AR中的計算機視覺應用不存在任何技術挑戰和限制24、計算機視覺中的視頻理解不僅包括對單個幀的分析,還需要考慮幀之間的關系。假設我們要理解一個電影片段的情節和情感,以下哪種方法能夠有效地捕捉視頻中的時空動態信息和語義信息?()A.基于幀級特征和分類器的方法B.基于深度學習的視頻理解模型,結合注意力機制C.基于光流和運動軌跡的方法D.基于音頻和視頻融合的方法25、計算機視覺在體育賽事分析中的應用可以提供更深入的比賽洞察。假設要分析一場足球比賽中球員的跑位和傳球模式,以下關于體育賽事計算機視覺應用的描述,正確的是:()A.僅依靠球員的位置信息就能全面分析比賽中的戰術和策略B.球員的速度和加速度等動態信息對比賽分析的價值不大C.結合深度學習和軌跡分析技術可以更有效地挖掘比賽中的關鍵模式和趨勢D.比賽場地的光照和攝像機視角對計算機視覺分析的結果沒有影響26、計算機視覺中的人臉識別技術應用廣泛。假設要在一個門禁系統中實現準確的人臉識別,以下關于人臉識別方法的描述,正確的是:()A.基于幾何特征的人臉識別方法對姿態和光照變化具有很強的魯棒性B.基于模板匹配的方法能夠處理大規模的人臉數據庫,并且識別速度快C.深度學習中的卷積神經網絡在人臉識別中能夠學習到更具判別性的特征,但容易受到數據偏差的影響D.人臉識別系統一旦訓練完成,就不需要更新和優化,能夠一直保持高準確率27、在計算機視覺中,深度估計是確定場景中物體距離相機的距離。以下關于深度估計的說法,錯誤的是()A.可以通過立體視覺、結構光或飛行時間等技術來獲取深度信息B.深度學習方法在單目深度估計中取得了顯著進展C.深度估計對于三維重建、虛擬現實和增強現實等應用具有重要意義D.深度估計的結果總是非常精確,不需要進行后處理和優化28、視頻理解是計算機視覺中的一個具有挑戰性的任務。以下關于視頻理解的敘述,不準確的是()A.視頻理解不僅需要分析每一幀圖像的內容,還需要考慮幀之間的時間關系B.循環神經網絡(RNN)和長短期記憶網絡(LSTM)在處理視頻序列數據時具有優勢C.視頻理解在視頻監控、行為分析和內容推薦等方面具有廣泛的應用前景D.目前的視頻理解技術已經能夠完全理解復雜場景下的視頻內容,不存在任何挑戰29、在計算機視覺的場景理解任務中,假設要理解一個室內場景的布局和物體關系。以下關于利用深度學習模型的方法,哪一項是不太恰當的?()A.使用卷積神經網絡(CNN)提取圖像特征B.運用循環神經網絡(RNN)處理場景的序列信息C.直接使用未經訓練的神經網絡,期望其自動學習場景理解D.結合CNN和RNN,構建端到端的場景理解模型30、計算機視覺中的視頻理解任務包括對視頻內容的分析和解釋。假設要理解一段新聞視頻的主要內容和事件發展。以下關于視頻理解的描述,哪一項是不正確的?()A.可以通過對視頻中的幀進行分類、目標檢測和跟蹤來實現視頻理解B.深度學習中的注意力機制可以幫助聚焦視頻中的關鍵信息,提高理解的準確性C.視頻理解只需要關注視覺信息,不需要考慮音頻和文字等其他模態的信息D.可以結合知識圖譜和語義理解技術,對視頻中的內容進行更深入的分析和解釋二、應用題(本大題共5個小題,共25分)1、(本題5分)運用圖像識別技術,檢測物流倉庫中包裹的標簽信息。2、(本題5分)使用目標跟蹤算法,對游泳比賽中的運動員進行軌跡跟蹤和速度分析。3、(本題5分)利用目標檢測算法,在地質勘查圖像中檢測礦坑。4、(本題5分)基于深度學習,實現對乒乓球比賽中擦邊球的檢測。5、(本題5分)開發一個能夠識別不同種類貝類的程序。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論