2024年華師大新版高一數學上冊階段測試試卷含答案_第1頁
2024年華師大新版高一數學上冊階段測試試卷含答案_第2頁
2024年華師大新版高一數學上冊階段測試試卷含答案_第3頁
2024年華師大新版高一數學上冊階段測試試卷含答案_第4頁
2024年華師大新版高一數學上冊階段測試試卷含答案_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

…………○…………內…………○…………裝…………○…………內…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2024年華師大新版高一數學上冊階段測試試卷含答案考試試卷考試范圍:全部知識點;考試時間:120分鐘學校:______姓名:______班級:______考號:______總分欄題號一二三四五六總分得分評卷人得分一、選擇題(共5題,共10分)1、把一顆骰子投擲兩次,觀察出現的點數,記第一次出現的點數為a,第二次出現的點數為b,則方程組只有一個解的概率為()

A.

B.

C.

D.

2、【題文】A、B兩點相距4cm,且A、B與平面的距離分別為3cm和1cm,則AB與平面所成角的大小是()

A.30°B.60°C.90°D.30°或90°3、已知y=loga(2﹣ax)是[0,1]上的減函數,則a的取值范圍為()A.(0,1)B.(1,2)C.(0,2)D.(2,+∞)4、已知則()A.2B.-2C.3D.-35、若冪函數f(x)=xα經過點則f(x)是()A.偶函數,且在(0,+∞)上是增函數B.偶函數,且在(0,+∞)上是減函數C.奇函數,且在(0,+∞)是減函數D.非奇非偶函數,且在(0,+∞)上是增函數評卷人得分二、填空題(共7題,共14分)6、教育局對某校初二男生的體育項目“俯臥撐”進行抽樣調查;被抽到的50名學生的成績如下:

。成績(次)109876543人數865164731由此可以估計,全校初二男生俯臥撐的平均成績約為____次(精確到0.1).7、【題文】已知一個正三棱錐的正視圖為等腰直角三角形;其尺寸如圖所示,則其側視圖的周長為________.

8、【題文】已知函數則的值為____.9、選用適當符號填空:已知A={x|x2-1=0},則有1______A,{-1}______A,?______A,{1,-1}______A.10、的化簡結果為______(用根式表示).11、圓的半徑變為原來的3倍,而所對弧長不變,則該弧所對圓心角是原來圓弧所對圓心角的______倍.12、若向量與的夾角為銳角,則m的取值范圍是______.評卷人得分三、證明題(共8題,共16分)13、如圖;已知AB是⊙O的直徑,P是AB延長線上一點,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:

(1)AD=AE

(2)PC?CE=PA?BE.14、求證:(1)周長為21的平行四邊形能夠被半徑為的圓面所覆蓋.

(2)桌面上放有一絲線做成的線圈,它的周長是2l,不管線圈形狀如何,都可以被個半徑為的圓紙片所覆蓋.15、AB是圓O的直徑,CD是圓O的一條弦,AB與CD相交于E,∠AEC=45°,圓O的半徑為1,求證:EC2+ED2=2.16、已知D是銳角△ABC外接圓劣弧的中點;弦AD與邊BC相交于點E,而且AB:AC=2:1,AB:EC=3:1.求:

(1)EC:CB的值;

(2)cosC的值;

(3)tan的值.17、如圖,已知:D、E分別為△ABC的AB、AC邊上的點,DE∥BC,BE與CD交于點O,直線AO與BC邊交于M,與DE交于N,求證:BM=MC.18、已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長線交圓于D,求證:AG2=GC?GD.19、AB是圓O的直徑,CD是圓O的一條弦,AB與CD相交于E,∠AEC=45°,圓O的半徑為1,求證:EC2+ED2=2.20、如圖;過圓O外一點D作圓O的割線DBA,DE與圓O切于點E,交AO的延長線于F,AF交圓O于C,且AD⊥DE.

(1)求證:E為的中點;

(2)若CF=3,DE?EF=,求EF的長.評卷人得分四、作圖題(共4題,共28分)21、如圖A、B兩個村子在河CD的同側,A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現在要在河邊CD上建一水廠,向A、B兩村送自來水,鋪設管道費用為每千米2000元,請你在CD上選擇水廠位置O,使鋪設管道的費用最省,并求出其費用.22、畫出計算1++++的程序框圖.23、某潛艇為躲避反潛飛機的偵查,緊急下潛50m后,又以15km/h的速度,沿北偏東45°前行5min,又以10km/h的速度,沿北偏東60°前行8min,最后擺脫了反潛飛機的偵查.試畫出潛艇整個過程的位移示意圖.24、已知簡單組合體如圖;試畫出它的三視圖(尺寸不做嚴格要求)

評卷人得分五、計算題(共2題,共6分)25、如圖,某一水庫水壩的橫斷面是梯形ABCD,壩頂寬CD=5米,斜坡AD=16米,壩高6米,斜坡BC的坡度i=1:3,求斜坡AD的坡角∠A(精確到1分)和壩底寬AB(精確到0.1米).26、已知函數f(x),g(x)同時滿足:g(x﹣y)=g(x)g(y)+f(x)f(y);f(﹣1)=﹣1,f(0)=0,f(1)=1,求g(0),g(1),g(2)的值.評卷人得分六、綜合題(共3題,共18分)27、已知y=ax2+bx+c(a≠0)圖象與直線y=kx+4相交于A(1;m),B(4,8)兩點,與x軸交于原點及點C.

(1)求直線和拋物線解析式;

(2)在x軸上方的拋物線上是否存在點D,使S△OCD=2S△OAB?如果存在,求出點D坐標,如果不存在,說明理由.28、如圖,四邊形ABCD是菱形,點D的坐標是(0,),以點C為頂點的拋物線y=ax2+bx+c恰好經過x軸上A;B兩點.

(1)求A;B,C三點的坐標;

(2)求經過A,B,C三點的拋物線的解析式.29、若記函數y在x處的值為f(x),(例如y=x2,也可記著f(x)=x2)已知函數f(x)=ax2+bx+c的圖象如圖所示,且ax2+(b-1)x+c>0對所有的實數x都成立,則下列結論成立的有____.

(1)ac>0;

(2);

(3)對所有的實數x都有f(x)>x;

(4)對所有的實數x都有f(f(x))>x.參考答案一、選擇題(共5題,共10分)1、B【分析】

骰子投擲2次所有的結果有6×6=36種,由方程組可得得(b-2a)y=3-2a,當b-2a≠0時;

方程組有唯一解.

當b=2a時包含的結果有:當a=1時,b=2;當a=2時,b=4,當a=3時,b=6共三個,

所以方程組只有一個解包含的基本結果有36-3=33種,

由古典概型的概率公式得只有一個解的概率為=

故選B.

【解析】【答案】利用分布計數原理求出骰子投擲2次所有的結果;通過解二元一次方程組判斷出方程組有唯一解的條件,先求出不。

滿足該條件的結果個數;再求出方程組有唯一解的結果個數,利用古典概型的概率公式求出方程組只有一個解的概率.

2、D【分析】【解析】略【解析】【答案】D3、B【分析】【解答】解:∵f(x)=loga(2﹣ax)在[0;1]上是x的減函數;

∴f(0)>f(1);

即loga2>loga(2﹣a).

∴1<a<2.

故答案為:B.

【分析】本題必須保證:①使loga(2﹣ax)有意義,即a>0且a≠1,2﹣ax>0.②使loga(2﹣ax)在[0,1]上是x的減函數.由于所給函數可分解為y=logau,u=2﹣ax,其中u=2﹣ax在a>0時為減函數,所以必須a>1;③[0,1]必須是y=loga(2﹣ax)定義域的子集.4、C【分析】【分析】因為而利用平方關系和二倍角公式,分子分母同時除以余弦值的平方得到:

故選C

【點評】解決該試題的關鍵是將所求的表達式化簡,在求解。注意熟練運用二倍角公式化簡和計算。5、D【分析】解:冪函數f(x)=xα的圖象經過點(2,);

所以=2α,解得:α=

函數的解析式為:f(x)=

故函數f(x)是非奇非偶函數;且在(0,+∞)上是增函數;

故選:D.

求出冪函數的解析式;然后求解函數值即可.

本題考查冪函數的解析式的求法,函數值的求法,基本知識的考查.【解析】【答案】D二、填空題(共7題,共14分)6、略

【分析】

有題意知本題是求一個加權平均數;

全校初二男生俯臥撐的平均成績約為:=7.2

故答案為:7.2

【解析】【答案】把50名同學的俯臥撐成績都加起來;用所有俯臥撐總數除以總人數,得到50名同學的平均成績.

7、略

【分析】【解析】

試題分析:由正視圖中的尺寸可知,底面邊長為6,高為3.由此計算出側棱長:側面上的斜高為:所以周長為:

考點:三視圖、正三棱的基本量【解析】【答案】8、略

【分析】【解析】因為所以=【解析】【答案】9、略

【分析】解:由題意;A={1,-1};

則1∈A;{-1}?A,??A,{-1,1}=A.

故答案為:∈;?,?,=.

正確利用集合與元素;集合與集合之間的關系用恰當利用.

本題考查了元素與集合,集合與集合的關系,屬于基礎題.【解析】∈;?;?;=10、略

【分析】解:====

故答案為:

根據有理數指數冪與根式的關系;結合指數的運算性質,直接運算,可得答案.

本題考查的知識點是有理數指數冪與根式的關系,難度不大,屬于基礎題.【解析】11、略

【分析】解:設原來圓的半徑為r,弧長為l,變化后的圓心角為x,則原來圓弧所對圓心角為

則l=

解得:x=

該弧所對圓心角是原來圓弧所對圓心角的倍。

故答案為:

直接利用弧長公式解答的即可.

本題主要考查了弧長公式的計算能力,屬于基礎題.【解析】12、略

【分析】解:∵兩個向量的夾角為銳角,∴>0.

即4+2m>0;解得m>-2.

當兩個向量方向相同時;m=8.

∴m的取值范圍是{m|m>-2且m≠8}.

即m∈(-2;8)∪(8,+∞);

故答案為:(-2;8)∪(8,+∞).

令解出m;去掉夾角為0的特殊情況即可.

本題考查了平面向量的數量積運算,向量共線的坐標表示,屬于基礎題.【解析】(-2,8)∪(8,+∞)三、證明題(共8題,共16分)13、略

【分析】【分析】(1)連AC;BC;OC,如圖,根據切線的性質得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據三角形相似的判定易證得Rt△ACE≌Rt△ACD;

即可得到結論;

(2)根據三角形相似的判定易證Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,

∵PC是⊙O的切線;

∴OC⊥PD;

而AD⊥PC;

∴OC∥PD;

∴∠ACO=∠CAD;

而∠ACO=∠OAC;

∴∠DAC=∠CAO;

又∵CE⊥AB;

∴∠AEC=90°;

∴Rt△ACE≌Rt△ACD;

∴CD=CE;AD=AE;

(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;

∴Rt△PCE∽Rt△PAD;

∴PC:PA=CE:AD;

又∵AB為⊙O的直徑;

∴∠ACB=90°;

而∠DAC=∠CAO;

∴Rt△EBC∽Rt△DCA;

∴BE:CE=CD:AD;

而CD=CE;

∴BE:CE=CE:AD;

∴BE:CE=PC:PA;

∴PC?CE=PA?BE.14、略

【分析】【分析】(1)關鍵在于圓心位置;考慮到平行四邊形是中心對稱圖形,可讓覆蓋圓圓心與平行四邊形對角線交點疊合.

(2)“曲“化“直“.對比(1),應取均分線圈的二點連線段中點作為覆蓋圓圓心.【解析】【解答】

證明:(1)如圖1;設ABCD的周長為2l,BD≤AC,AC;BD交于O,P為周界上任意一點,不妨設在AB上;

則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.

因此周長為2l的平行四邊形ABCD可被以O為圓心;半徑為的圓所覆蓋;命題得證.

(2)如圖2,在線圈上分別取點R,Q,使R、Q將線圈分成等長兩段,每段各長l.又設RQ中點為G,M為線圈上任意一點,連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=

因此,以G為圓心,長為半徑的圓紙片可以覆蓋住整個線圈.15、略

【分析】【分析】首先作CD關于AB的對稱直線FG,由∠AEC=45°,即可證得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易證得O,C,G,E四點共圓,則可求得CG2=OC2+OG2=2.繼而證得EC2+ED2=2.【解析】【解答】證明:作CD關于AB的對稱直線FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四點共圓.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.16、略

【分析】【分析】(1)求出∠BAD=∠CAD,根據角平分線性質推出=;代入求出即可;

(2)作BF⊥AC于F;求出AB=BC,根據等腰三角形性質求出AF=CF,根據三角函數的定義求出即可;

(3)BF過圓心O,作OM⊥BC于M,求出BF,根據銳角三角函數的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;

∴∠BAD=∠CAD;

∴;

∴.

答:EC:CB的值是.

(2)作BF⊥AC于F;

∵=,=;

∴BA=BC;

∴F為AC中點;

∴cosC==.

答:cosC的值是.

(3)BF過圓心O;作OM⊥BC于M;

由勾股定理得:BF==CF;

∴tan.

答:tan的值是.17、略

【分析】【分析】延長AM,過點B作CD的平行線與AM的延長線交于點F,再連接CF.根據平行線分線段成比例的性質和逆定理可得CF∥BE,根據平行四邊形的判定和性質即可得證.【解析】【解答】證明:延長AM;過點B作CD的平行線與AM的延長線交于點F,再連接CF.

又∵DE∥BC;

∴;

∴CF∥BE;

從而四邊形OBFC為平行四邊形;

所以BM=MC.18、略

【分析】【分析】構造以重心G為頂點的平行四邊形GBFC,并巧用A、D、F、C四點共圓巧證乘積.延長GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長GP至F;使PF=PG,連接AD,BF,CF;

∵G是△ABC的重心;

∴AG=2GP;BP=PC;

∵PF=PG;

∴四邊形GBFC是平行四邊形;

∴GF=2GP;

∴AG=GF;

∵BG∥CF;

∴∠1=∠2

∵過A;G的圓與BG切于G;

∴∠3=∠D;

又∠2=∠3;

∴∠1=∠2=∠3=∠D;

∴A;D、F、C四點共圓;

∴GA;GF=GC?GD;

即GA2=GC?GD.19、略

【分析】【分析】首先作CD關于AB的對稱直線FG,由∠AEC=45°,即可證得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易證得O,C,G,E四點共圓,則可求得CG2=OC2+OG2=2.繼而證得EC2+ED2=2.【解析】【解答】證明:作CD關于AB的對稱直線FG;

∵∠AEC=45°;

∴∠AEF=45°;

∴CD⊥FG;

∴CG2=CE2+EG2;

即CG2=CE2+ED2;

∵△OCD≌△OGF(SSS);

∴∠OCD=∠OGF.

∴O;C,G,E四點共圓.

∴∠COG=∠CEG=90°.

∴CG2=OC2+OG2=2.

∴EC2+ED2=2.20、略

【分析】【分析】要證E為中點,可證∠EAD=∠OEA,利用輔助線OE可以證明,求EF的長需要借助相似,得出比例式,之間的關系可以求出.【解析】【解答】(1)證明:連接OE

OA=OE=>∠OAE=∠OEA

DE切圓O于E=>OE⊥DE

AD⊥DE=>∠EAD+∠AED=90°

=>∠EAD=∠OEA

?OE∥AD

=>E為的中點.

(2)解:連CE;則∠AEC=90°,設圓O的半徑為x

∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>

DE切圓O于E=>△FCE∽△FEA

∴,

即DE?EF=AD?CF

DE?EF=;CF=3

∴AD=

OE∥AD=>=>=>8x2+7x-15=0

∴x1=1,x2=-(舍去)

∴EF2=FC?FA=3x(3+2)=15

∴EF=四、作圖題(共4題,共28分)21、略

【分析】【分析】作點A關于河CD的對稱點A′,當水廠位置O在線段AA′上時,鋪設管道的費用最省.【解析】【解答】解:作點A關于河CD的對稱點A′;連接A′B,交CD與點O,則點O即為水廠位置,此時鋪設的管道長度為OA+OB.

∵點A與點A′關于CD對稱;

∴OA′=OA;A′C=AC=1;

∴OA+OB=OA′+OB=A′B.

過點A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;

∴在Rt△A′BE中,A′B==5(千米);

∴2000×5=10000(元).

答:鋪設管道的最省費用為10000元.22、解:程序框圖如下:

【分析】【分析】根據題意,設計的程序框圖時需要分別設置一個累加變量S和一個計數變量i,以及判斷項數的判斷框.23、解:由題意作示意圖如下;

【分析】【分析】由題意作示意圖。24、

解:幾何體的三視圖為:

【分析】【分析】利用三視圖的作法,畫出三視圖即可.五、計算題(共2題,共6分)25、略

【分析】【分析】過C、D作出梯形的兩高,構造出兩直角三角形,利用勾股定理和三角函數值求得兩直角三角形的另2邊,再加上CD,即為AB長,根據∠A的任意三角函數值即可求得度數.【解析】【解答】解:作DE⊥AB于點E;CF⊥AB于點F;

則ED=CF=6;

因為BC的坡度i=1:3;

∴BF=18;

∵AD=16;

∴AE=≈14.83;

∴AB=AE+BF+CD≈37.8米;

∵sinA=6÷16=0.375;

∴∠A=22°1′.26、解:由題設條件,令x=y=0;則有。

g(0)=g2(0)+f2(0)

又f(0)=0,故g(0)=g2(0)

解得g(0)=0;或者g(0)=1

若g(0)=0,令x=y=1得g(0)=g2(1)+f2(1)=0

又f(1)=1知g2(1)+1=0;此式無意義,故g(0)≠0

此時有g(0)=g2(1)+f2(1)=1

即g2(1)+1=1;故g(1)=0

令x=0;y=1得g(﹣1)=g(0)g(1)+f(0)f(﹣1)=0

令x=1;y=﹣1得g(2)=g(1)g(﹣1)+f(1)f(﹣1)=﹣1

綜上得g(0)=1;g(1)=0,g(2)=﹣1

【分析】【分析】由題設條件知,可以采用賦值的方法來求值,可令x求g(0),再令x=y=1求g(1)的值,令x=1,y=﹣1求g(2)的值六、綜合題(共3題,共18分)27、略

【分析】【分析】(1)由直線y=kx+4過A(1,m),B(4,8)兩點,列方程組求k、m的值,再把O、A、B三點坐標代入拋物線解析式求a、b;c的值;

(2)存在.根據O、A、B三點坐標求△OAB的面積,再由S△OCD=2S△OAB=12,求D點縱坐標,代入拋物線解析式求D點縱坐標.【解析】【解答】解:(1)∵直線y=kx+4過A(1;m),B(4,8)兩點;

∴,解得;∴y=x+4;

把O、A、B三點坐標代入拋物線解析式,得,;

∴y=-x2+6x;

(2)存在.設D點縱坐標為h(h>0);

由O(0,0),A(1,5),B(4,8),可知S△OAB=6;

∴S△OCD=2S△OAB=12,×6×h=12;解得h=4;

由-x2+6x=4,得x=3±;

∴D(3+,4)或(3-,4).28、略

【分析】【分析】(1)過C作CE⊥AB于E;根據拋物線的對稱性知AE=BE;由于四邊形ABCD是菱形,易證得R

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論