2025屆江蘇省淮安市高中教學協作體高三第二次調研數學試卷含解析_第1頁
2025屆江蘇省淮安市高中教學協作體高三第二次調研數學試卷含解析_第2頁
2025屆江蘇省淮安市高中教學協作體高三第二次調研數學試卷含解析_第3頁
2025屆江蘇省淮安市高中教學協作體高三第二次調研數學試卷含解析_第4頁
2025屆江蘇省淮安市高中教學協作體高三第二次調研數學試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆江蘇省淮安市高中教學協作體高三第二次調研數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,,分別為,的中點,為上的任一點,實數,滿足,設、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.2.以下兩個圖表是2019年初的4個月我國四大城市的居民消費價格指數(上一年同月)變化圖表,則以下說法錯誤的是()(注:圖表一每個城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個月份的條形圖從左到右四個城市依次是北京、天津、上海、重慶)A.3月份四個城市之間的居民消費價格指數與其它月份相比增長幅度較為平均B.4月份僅有三個城市居民消費價格指數超過102C.四個月的數據顯示北京市的居民消費價格指數增長幅度波動較小D.僅有天津市從年初開始居民消費價格指數的增長呈上升趨勢3.甲乙丙丁四人中,甲說:我年紀最大,乙說:我年紀最大,丙說:乙年紀最大,丁說:我不是年紀最大的,若這四人中只有一個人說的是真話,則年紀最大的是()A.甲 B.乙 C.丙 D.丁4.設,則()A. B. C. D.5.設,滿足約束條件,則的最大值是()A. B. C. D.6.設f(x)是定義在R上的偶函數,且在(0,+∞)單調遞減,則()A. B.C. D.7.若函數()的圖象過點,則()A.函數的值域是 B.點是的一個對稱中心C.函數的最小正周期是 D.直線是的一條對稱軸8.定義在上函數滿足,且對任意的不相等的實數有成立,若關于x的不等式在上恒成立,則實數m的取值范圍是()A. B. C. D.9.若均為任意實數,且,則的最小值為()A. B. C. D.10.已知函數的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點旋轉;②沿軸正方向平移;③以軸為軸作軸對稱;④以軸的某一條垂線為軸作軸對稱.A.①③ B.③④ C.②③ D.②④11.已知焦點為的拋物線的準線與軸交于點,點在拋物線上,則當取得最大值時,直線的方程為()A.或 B.或 C.或 D.12.函數的大致圖象是A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設滿足約束條件,則目標函數的最小值為_.14.在平面五邊形中,,,,且.將五邊形沿對角線折起,使平面與平面所成的二面角為,則沿對角線折起后所得幾何體的外接球的表面積是______.15.已知復數(為虛數單位),則的共軛復數是_____,_____.16.雙曲線的離心率為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某企業生產一種產品,從流水線上隨機抽取件產品,統計其質量指標值并繪制頻率分布直方圖(如圖1):規定產品的質量指標值在的為劣質品,在的為優等品,在的為特優品,銷售時劣質品每件虧損元,優等品每件盈利元,特優品每件盈利元,以這件產品的質量指標值位于各區間的頻率代替產品的質量指標值位于該區間的概率.(1)求每件產品的平均銷售利潤;(2)該企業主管部門為了解企業年營銷費用(單位:萬元)對年銷售量(單位:萬件)的影響,對該企業近年的年營銷費用和年銷售量,數據做了初步處理,得到的散點圖(如圖2)及一些統計量的值.表中,,,.根據散點圖判斷,可以作為年銷售量(萬件)關于年營銷費用(萬元)的回歸方程.①求關于的回歸方程;②用所求的回歸方程估計該企業每年應投入多少營銷費,才能使得該企業的年收益的預報值達到最大?(收益銷售利潤營銷費用,取)附:對于一組數據,,,,其回歸直線的斜率和截距的最小二乘估計分別為,.18.(12分)已知數列的各項均為正數,且滿足.(1)求,及的通項公式;(2)求數列的前項和.19.(12分)記函數的最小值為.(1)求的值;(2)若正數,,滿足,證明:.20.(12分)已知函數(,)滿足下列3個條件中的2個條件:①函數的周期為;②是函數的對稱軸;③且在區間上單調.(Ⅰ)請指出這二個條件,并求出函數的解析式;(Ⅱ)若,求函數的值域.21.(12分)已知函數.(1)當時,求函數的值域.(2)設函數,若,且的最小值為,求實數的取值范圍.22.(10分)中國古代數學經典《數書九章》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱為“陽馬”,將四個面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點O為球心,AC為直徑的球面交PD于M(異于點D),交PC于N(異于點C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結論);若不是,請說明理由;(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據三角形中位線的性質,可得到的距離等于△的邊上高的一半,從而得到,由此結合基本不等式求最值,得到當取到最大值時,為的中點,再由平行四邊形法則得出,根據平面向量基本定理可求得,從而可求得結果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當且僅當時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據平面向量基本定理可得,從而.故選:D【點睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應用,考查了基本不等式求最值,屬于中檔題.2、D【解析】

采用逐一驗證法,根據圖表,可得結果.【詳解】A正確,從圖表二可知,3月份四個城市的居民消費價格指數相差不大B正確,從圖表二可知,4月份只有北京市居民消費價格指數低于102C正確,從圖表一中可知,只有北京市4個月的居民消費價格指數相差不大D錯誤,從圖表一可知上海市也是從年初開始居民消費價格指數的增長呈上升趨勢故選:D【點睛】本題考查圖表的認識,審清題意,細心觀察,屬基礎題.3、C【解析】

分別假設甲乙丙丁說的是真話,結合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【詳解】①假設甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的不是甲;②假設乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;③假設丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀最大的也不是乙;④假設丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.【點睛】本題考查合情推理,解題時可從一種情形出發,推理出矛盾的結論,說明這種情形不會發生,考查了分析能力和推理能力,屬于中檔題.4、D【解析】

結合指數函數及對數函數的單調性,可判斷出,,,即可選出答案.【詳解】由,即,又,即,,即,所以.故選:D.【點睛】本題考查了幾個數的大小比較,考查了指數函數與對數函數的單調性的應用,屬于基礎題.5、D【解析】

作出不等式對應的平面區域,由目標函數的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內平移當過點時,取得最大值.由得:,故選:D【點睛】本題主要考查線性規劃的應用,利用數形結合是解決線性規劃題目的常用方法,屬于基礎題.6、D【解析】

利用是偶函數化簡,結合在區間上的單調性,比較出三者的大小關系.【詳解】是偶函數,,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數的奇偶性和單調性比較大小,屬于基礎題.7、A【解析】

根據函數的圖像過點,求出,可得,再利用余弦函數的圖像與性質,得出結論.【詳解】由函數()的圖象過點,可得,即,,,故,對于A,由,則,故A正確;對于B,當時,,故B錯誤;對于C,,故C錯誤;對于D,當時,,故D錯誤;故選:A【點睛】本題主要考查了二倍角的余弦公式、三角函數的圖像與性質,需熟記性質與公式,屬于基礎題.8、B【解析】

結合題意可知是偶函數,且在單調遞減,化簡題目所給式子,建立不等式,結合導函數與原函數的單調性關系,構造新函數,計算最值,即可.【詳解】結合題意可知為偶函數,且在單調遞減,故可以轉換為對應于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點睛】本道題考查了函數的基本性質和導函數與原函數單調性關系,計算范圍,可以轉化為函數,結合導函數,計算最值,即可得出答案.9、D【解析】

該題可以看做是圓上的動點到曲線上的動點的距離的平方的最小值問題,可以轉化為圓心到曲線上的動點的距離減去半徑的平方的最值問題,結合圖形,可以斷定那個點應該滿足與圓心的連線與曲線在該點的切線垂直的問題來解決,從而求得切點坐標,即滿足條件的點,代入求得結果.【詳解】由題意可得,其結果應為曲線上的點與以為圓心,以為半徑的圓上的點的距離的平方的最小值,可以求曲線上的點與圓心的距離的最小值,在曲線上取一點,曲線有在點M處的切線的斜率為,從而有,即,整理得,解得,所以點滿足條件,其到圓心的距離為,故其結果為,故選D.【點睛】本題考查函數在一點處切線斜率的應用,考查圓的程,兩條直線垂直的斜率關系,屬中檔題.10、D【解析】

計算得到,,故函數是周期函數,軸對稱圖形,故②④正確,根據圖像知①③錯誤,得到答案.【詳解】,,,當沿軸正方向平移個單位時,重合,故②正確;,,故,函數關于對稱,故④正確;根據圖像知:①③不正確;故選:.【點睛】本題考查了根據函數圖像判斷函數性質,意在考查學生對于三角函數知識和圖像的綜合應用.11、A【解析】

過作與準線垂直,垂足為,利用拋物線的定義可得,要使最大,則應最大,此時與拋物線相切,再用判別式或導數計算即可.【詳解】過作與準線垂直,垂足為,,則當取得最大值時,最大,此時與拋物線相切,易知此時直線的斜率存在,設切線方程為,則.則,則直線的方程為.故選:A.【點睛】本題考查直線與拋物線的位置關系,涉及到拋物線的定義,考查學生轉化與化歸的思想,是一道中檔題.12、A【解析】

利用函數的對稱性及函數值的符號即可作出判斷.【詳解】由題意可知函數為奇函數,可排除B選項;當時,,可排除D選項;當時,,當時,,即,可排除C選項,故選:A【點睛】本題考查了函數圖象的判斷,函數對稱性的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據滿足約束條件,畫出可行域,將目標函數,轉化為,平移直線,找到直線在軸上截距最小時的點,此時,目標函數取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標函數,轉化為,平移直線,找到直線在軸上截距最小時的點此時,目標函數取得最小值,最小值為故答案為:-1【點睛】本題主要考查線性規劃求最值,還考查了數形結合的思想方法,屬于基礎題.14、【解析】

設的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,得到直線與的交點為幾何體外接球的球心,結合三角形的性質,求得球的半徑,利用表面積公式,即可求解.【詳解】設的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,則由球的性質可知,直線與的交點為幾何體外接球的球心,取的中點,連接,,由條件得,,連接,因為,從而,連接,則為所得幾何體外接球的半徑,在直角中,由,,可得,即外接球的半徑為,故所得幾何體外接球的表面積為.故答案為:.【點睛】本題主要考查了空間幾何體的結構特征,以及多面體的外接球的表面積的計算,其中解答中熟記空間幾何體的結構特征,求得外接球的半徑是解答的關鍵,著重考查了空間想象能力與運算求解能力,屬于中檔試題.15、【解析】

直接利用復數的乘法運算化簡,從而得到復數的共軛復數和的模.【詳解】,則復數的共軛復數為,且.故答案為:;.【點睛】本題考查了復數代數形式的乘除運算,考查了復數的基本概念,是基礎的計算題.16、2【解析】三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)元.(2)①②萬元【解析】

(1)每件產品的銷售利潤為,由已知可得的取值,由頻率分布直方圖可得劣質品、優等品、特優品的概率,從而可得的概率分布列,依期望公式計算出期望即為平均銷售利潤;(2)①對取自然對數,得,令,,,則,這就是線性回歸方程,由所給公式數據計算出系數,得線性回歸方程,從而可求得;②求出收益,可設換元后用導數求出最大值.【詳解】解:(1)設每件產品的銷售利潤為,則的可能取值為,,.由頻率分布直方圖可得產品為劣質品、優等品、特優品的概率分別為、、.所以;;.所以的分布列為所以(元).即每件產品的平均銷售利潤為元.(2)①由,得,令,,,則,由表中數據可得,則,所以,即,因為取,所以,故所求的回歸方程為.②設年收益為萬元,則令,則,,當時,,當時,,所以當,即時,有最大值.即該企業每年應該投入萬元營銷費,能使得該企業的年收益的預報值達到最大,最大收益為萬元.【點睛】本題考查頻率分布直方圖,考查隨機變量概率分布列與期望,考查求線性回歸直線方程,及回歸方程的應用.在求指數型回歸方程時,可通過取對數的方法轉化為求線性回歸直線方程,然后再求出指數型回歸方程.18、(1);.;(2)【解析】

(1)根據題意,知,且,令和即可求出,,以及運用遞推關系求出的通項公式;(2)通過定義法證明出是首項為8,公比為4的等比數列,利用等比數列的前項和公式,即可求得的前項和.【詳解】解:(1)由題可知,,且,當時,,則,當時,,,由已知可得,且,∴的通項公式:.(2)設,則,所以,,得是首項為8,公比為4的等比數列,所以數列的前項和為:,即,所以數列的前項和:.【點睛】本題考查通過遞推關系求數列的通項公式,以及等比數列的前項和公式,考查計算能力.19、(1)(2)證明見解析【解析】

(1)將函數轉化為分段函數或利用絕對值三角不等式進行求解;(2)利用基本不等式或柯西不等式證明即可.【詳解】解法一:(1)當時,,當,,當時,,所以解法二:(1)如圖當時,解法三:(1)當且僅當即時,等號成立.當時解法一:(2)由題意可知,,因為,,,所以要證明不等式,只需證明,因為成立,所以原不等式成立.解法二:(2)因為,,,所以,,又因為,所以,所以,原不等式得證.補充:解法三:(2)由題意可知,,因為,,,所以要證明不等式,只需證明,由柯西不等式得:成立,所以原不等式成立.【點睛】本題主要考查了絕對值函數的最值求解,不等式的證明,絕對值三角不等式,基本不等式及柯西不等式的應用,考查了學生的邏輯推理和運算求解能力.20、(Ⅰ)只有①②成立,;(Ⅱ).【解析】

(Ⅰ)依次討論①②成立,①③成立,②③成立,計算得到只有①②成立,得到答案.(Ⅱ)得到,得到函數值域.【詳解】(Ⅰ)由①可得,;由②得:,;由③得,,,;若①②成立,則,,,若①③成立,則,,不合題意,若②③成立,則,,與③中的矛盾,所以②③不成立,所以只有①②成立,.(Ⅱ)由題意得,,所以函數的值域為.【點睛】本題考查了三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論