




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省石家莊二中雄安校區2025屆高三第二次診斷性檢測數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下圖是來自古希臘數學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.2.已知集合,則集合的非空子集個數是()A.2 B.3 C.7 D.83.已知,,,,.若實數,滿足不等式組,則目標函數()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值4.函數(其中是自然對數的底數)的大致圖像為()A. B. C. D.5.已知等式成立,則()A.0 B.5 C.7 D.136.如圖是國家統計局于2020年1月9日發布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環比)根據該折線圖,下列結論錯誤的是()A.2019年12月份,全國居民消費價格環比持平B.2018年12月至2019年12月全國居民消費價格環比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格7.下邊程序框圖的算法源于我國古代的中國剩余定理.把運算“正整數除以正整數所得的余數是”記為“”,例如.執行該程序框圖,則輸出的等于()A.16 B.17 C.18 D.198.數學中的數形結合,也可以組成世間萬物的絢麗畫面.一些優美的曲線是數學形象美、對稱美、和諧美的結合產物,曲線恰好是四葉玫瑰線.給出下列結論:①曲線C經過5個整點(即橫、縱坐標均為整數的點);②曲線C上任意一點到坐標原點O的距離都不超過2;③曲線C圍成區域的面積大于;④方程表示的曲線C在第二象限和第四象限其中正確結論的序號是()A.①③ B.②④ C.①②③ D.②③④9.的展開式中的系數為()A. B. C. D.10.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.11.設全集,集合,,則集合()A. B. C. D.12.在很多地鐵的車廂里,頂部的扶手是一根漂亮的彎管,如下圖所示.將彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個坐位的寬度(),每個座位寬度為,估計彎管的長度,下面的結果中最接近真實值的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知的終邊過點,若,則__________.14.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機摸出2只球,則這2只球顏色不同的概率為__________.15.在的展開式中,常數項為________.(用數字作答)16.如圖,在正四棱柱中,P是側棱上一點,且.設三棱錐的體積為,正四棱柱的體積為V,則的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知不等式對于任意的恒成立.(1)求實數m的取值范圍;(2)若m的最大值為M,且正實數a,b,c滿足.求證.18.(12分)已知與有兩個不同的交點,其橫坐標分別為().(1)求實數的取值范圍;(2)求證:.19.(12分)如圖,四棱錐P﹣ABCD的底面是梯形.BC∥AD,AB=BC=CD=1,AD=2,,(Ⅰ)證明;AC⊥BP;(Ⅱ)求直線AD與平面APC所成角的正弦值.20.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點.(1)求證:平面平面;(2)點在線段上,且,求平面與平面所成的銳二面角的余弦值.21.(12分)已知在平面直角坐標系中,曲線的參數方程為(為參數.).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,曲線與直線其中的一個交點為,且點極徑.極角(1)求曲線的極坐標方程與點的極坐標;(2)已知直線的直角坐標方程為,直線與曲線相交于點(異于原點),求的面積.22.(10分)如圖,在平行四邊形中,,,現沿對角線將折起,使點A到達點P,點M,N分別在直線,上,且A,B,M,N四點共面.(1)求證:;(2)若平面平面,二面角平面角大小為,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進而求得所求表達式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點睛】本小題主要考查同角三角函數的基本關系式,考查二倍角公式,屬于基礎題.2、C【解析】
先確定集合中元素,可得非空子集個數.【詳解】由題意,共3個元素,其子集個數為,非空子集有7個.故選:C.【點睛】本題考查集合的概念,考查子集的概念,含有個元素的集合其子集個數為,非空子集有個.3、B【解析】
判斷直線與縱軸交點的位置,畫出可行解域,即可判斷出目標函數的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標函數一定有最大值和最小值.故選:B【點睛】本題考查了目標函數最值是否存在問題,考查了數形結合思想,考查了不等式的性質應用.4、D【解析】由題意得,函數點定義域為且,所以定義域關于原點對稱,且,所以函數為奇函數,圖象關于原點對稱,故選D.5、D【解析】
根據等式和特征和所求代數式的值的特征用特殊值法進行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D【點睛】本題考查了二項式定理的應用,考查了特殊值代入法,考查了數學運算能力.6、D【解析】
先對圖表數據的分析處理,再結簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環比是負的,所以B錯誤;設2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D【點睛】此題考查了對圖表數據的分析處理能力及進行簡單的合情推理,屬于中檔題.7、B【解析】
由已知中的程序框圖可知,該程序的功能是利用循環結構計算并輸出變量的值,模擬程序的運行過程,代入四個選項進行驗證即可.【詳解】解:由程序框圖可知,輸出的數應為被3除余2,被5除余2的且大于10的最小整數.若輸出,則不符合題意,排除;若輸出,則,符合題意.故選:B.【點睛】本題考查了程序框圖.當循環的次數不多,或有規律時,常采用循環模擬或代入選項驗證的方法進行解答.8、B【解析】
利用基本不等式得,可判斷②;和聯立解得可判斷①③;由圖可判斷④.【詳解】,解得(當且僅當時取等號),則②正確;將和聯立,解得,即圓與曲線C相切于點,,,,則①和③都錯誤;由,得④正確.故選:B.【點睛】本題考查曲線與方程的應用,根據方程,判斷曲線的性質及結論,考查學生邏輯推理能力,是一道有一定難度的題.9、C【解析】由題意,根據二項式定理展開式的通項公式,得展開式的通項為,則展開式的通項為,由,得,所以所求的系數為.故選C.點睛:此題主要考查二項式定理的通項公式的應用,以及組合數、整數冪的運算等有關方面的知識與技能,屬于中低檔題,也是常考知識點.在二項式定理的應用中,注意區分二項式系數與系數,先求出通項公式,再根據所求問題,通過確定未知的次數,求出,將的值代入通項公式進行計算,從而問題可得解.10、A【解析】
作出其直觀圖,然后結合數據根據勾股定定理計算每一條棱長即可.【詳解】根據三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.【點睛】本題考查了四棱錐的三視圖的有關計算,正確還原直觀圖是解題關鍵,屬于基礎題.11、C【解析】∵集合,,∴點睛:本題是道易錯題,看清所問問題求并集而不是交集.12、B【解析】
為彎管,為6個座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對的圓心角,再利用弧長公式即可求解.【詳解】如圖所示,為彎管,為6個座位的寬度,則設弧所在圓的半徑為,則解得可以近似地認為,即于是,長所以是最接近的,其中選項A的長度比還小,不可能,因此只能選B,260或者由,所以弧長.故選:B【點睛】本題考查了弧長公式,需熟記公式,考查了學生的分析問題的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
】由題意利用任意角的三角函數的定義,求得的值.【詳解】∵的終邊過點,若,.即答案為-2.【點睛】本題主要考查任意角的三角函數的定義和誘導公式,屬基礎題.14、【解析】試題分析:根據題意,記白球為A,紅球為B,黃球為,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點:古典概型概率15、【解析】
的展開式的通項為,取計算得到答案.【詳解】的展開式的通項為:,取得到常數項.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力.16、【解析】
設正四棱柱的底面邊長,高,再根據柱體、錐體的體積公式計算可得.【詳解】解:設正四棱柱的底面邊長,高,則,即故答案為:【點睛】本題考查柱體、錐體的體積計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)法一:,,得,則,由此可得答案;法二:由題意,令,易知是偶函數,且時為增函數,由此可得出答案;(2)由(1)知,,即,結合“1”的代換,利用基本不等式即可證明結論.【詳解】解:(1)法一:(當且僅當時取等號),又(當且僅當時取等號),所以(當且僅當時取等號),由題意得,則,解得,故的取值范圍是;法二:因為對于任意恒有成立,即,令,易知是偶函數,且時為增函數,所以,即,則,解得,故的取值范圍是;(2)由(1)知,,即,∴,故不等式成立.【點睛】本題主要考查絕對值不等式的恒成立問題,考查基本不等式的應用,屬于中檔題.18、(1);(2)見解析【解析】
(1)利用導數研究的單調性,分析函數性質,數形結合,即得解;(2)構造函數,可證得:,,分析直線,與從左到右交點的橫坐標,在,處的切線即得解.【詳解】(1)設函數,,令,令故在單調遞減,在單調遞增,∴,∵時;;時.(2)①過點,的直線為,則令,,,.②過點,的直線為,則,在上單調遞增.③設直線,與從左到右交點的橫坐標依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點的橫坐標依次為,.【點睛】本題考查了函數與導數綜合,考查了學生數形結合,綜合分析,轉化劃歸,邏輯推理,數學運算的能力,屬于較難題.19、(Ⅰ)見解析(Ⅱ).【解析】
(I)取的中點,連接,通過證明平面得出;(II)以為原點建立坐標系,求出平面的法向量,通過計算與的夾角得出與平面所成角.【詳解】(I)證明:取AC的中點M,連接PM,BM,∵AB=BC,PA=PC,∴AC⊥BM,AC⊥PM,又BM∩PM=M,∴AC⊥平面PBM,∵BP?平面PBM,∴AC⊥BP.(II)解:∵底面ABCD是梯形.BC∥AD,AB=BC=CD=1,AD=2,∴∠ABC=120°,∵AB=BC=1,∴AC,BM,∴AC⊥CD,又AC⊥BM,∴BM∥CD.∵PA=PC,CM,∴PM,∵PB,∴cos∠BMP,∴∠PMB=120°,以M為原點,以MB,MC的方向為x軸,y軸的正方向,以平面ABCD在M處的垂線為z軸建立坐標系M﹣xyz,如圖所示:則A(0,,0),C(0,,0),P(,0,),D(﹣1,,0),∴(﹣1,,0),(0,,0),(,,),設平面ACP的法向量為(x,y,z),則,即,令x得(,0,1),∴cos,,∴直線AD與平面APC所成角的正弦值為|cos,|.【點睛】本題考查異面直線垂直的證明,考查直線與平面所成角的正弦值的求法,解題時要認真審題,注意向量法的合理使用,難度一般.20、(1)見解析(2)【解析】
(1)根據等邊三角形的性質證得,根據面面垂直的性質定理,證得底面,由此證得,結合證得平面,由此證得:平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成的銳二面角的余弦值.【詳解】(1)證明:∵為等邊三角形,為的中點,∴∵平面底面,平面底面,∴底面平面,∴又由題意可知為正方形,又,∴平面平面,∴平面平面(2)如圖建立空間直角坐標系,則,,,由已知,得,設平面的法向量為,則令,則,∴由(1)知平面的法向量可取為∴∴平面與平面所成的銳二面角的余弦值為.【點睛】本小題主
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 緊跟時代步伐的農業職業經理人考試試題及答案
- 地槽電纜敷設施工方案
- 2024年項目管理資格特點試題及答案
- 2025年資料員-崗位技能(資料員)證模擬考試題及答案
- 硅冶煉與可持續發展考核試卷
- 銀行從業資格證考試綜合能力評估試題及答案
- 電氣工程與智能電網考核試卷
- 2024年項目管理資格考試的通識知識點試題及答案
- 橡膠制品在建筑領域的應用考核試卷
- 窗簾面料的智能抗菌特性考核試卷
- DB3311-T 268-2023 三葉青連續采收立體栽培技術規程
- 2023供熱行業發展報告
- 學生試卷分析萬能模板
- 《中外建筑史》課程標準
- 造口袋技術要求
- 國家開放大學(江西)地域文化(專)任務1-4試題及答案
- QCR 409-2017 鐵路后張法預應力混凝土梁管道壓漿技術條件
- 采購工作調研報告(3篇)
- 10KV高壓開關柜操作(培訓課件PPT)
- 希爾國際商務第11版英文教材課件完整版電子教案
- 《學弈》優質課一等獎課件
評論
0/150
提交評論