




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省邢臺市清河縣清河中學2025屆高考數學必刷試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若變量,滿足,則的最大值為()A.3 B.2 C. D.102.設拋物線的焦點為F,拋物線C與圓交于M,N兩點,若,則的面積為()A. B. C. D.3.已知函數是定義在上的偶函數,且在上單調遞增,則()A. B.C. D.4.等差數列中,,,則數列前6項和為()A.18 B.24 C.36 D.725.設分別為的三邊的中點,則()A. B. C. D.6.已知函數,則()A.函數在上單調遞增 B.函數在上單調遞減C.函數圖像關于對稱 D.函數圖像關于對稱7.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件8.設,,分別是中,,所對邊的邊長,則直線與的位置關系是()A.平行 B.重合C.垂直 D.相交但不垂直9.設分別是雙線的左、右焦點,為坐標原點,以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(位于軸右側),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.10.若點x,y位于由曲線x=y-2+1與x=3圍成的封閉區域內(包括邊界),則A.-3,1 B.-3,5 C.-∞,-311.將函數的圖像向右平移個單位長度,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數的圖像,若為奇函數,則的最小值為()A. B. C. D.12.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某學習小組有名男生和名女生.若從中隨機選出名同學代表該小組參加知識競賽,則選出的名同學中恰好名男生名女生的概率為___________.14.已知函數,若,則實數的取值范圍為__________.15.已知,滿足約束條件,則的最小值為______.16.已知雙曲線(a>0,b>0)的兩個焦點為、,點P是第一象限內雙曲線上的點,且,tan∠PF2F1=﹣2,則雙曲線的離心率為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,內角的對邊分別是,已知.(1)求的值;(2)若,求的面積.18.(12分)已知圓外有一點,過點作直線.(1)當直線與圓相切時,求直線的方程;(2)當直線的傾斜角為時,求直線被圓所截得的弦長.19.(12分)已知數列{an}的各項均為正,Sn為數列{an}的前n項和,an2+2an=4Sn+1.(1)求{an}的通項公式;(2)設bn,求數列{bn}的前n項和.20.(12分)在某外國語學校舉行的(高中生數學建模大賽)中,參與大賽的女生與男生人數之比為,且成績分布在,分數在以上(含)的同學獲獎.按女生、男生用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.(Ⅰ)求的值,并計算所抽取樣本的平均值(同一組中的數據用該組區間的中點值作代表);(Ⅱ)填寫下面的列聯表,并判斷在犯錯誤的概率不超過的前提下能否認為“獲獎與女生、男生有關”.女生男生總計獲獎不獲獎總計附表及公式:其中,.21.(12分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點.(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.22.(10分)已知圓上有一動點,點的坐標為,四邊形為平行四邊形,線段的垂直平分線交于點.(Ⅰ)求點的軌跡的方程;(Ⅱ)過點作直線與曲線交于兩點,點的坐標為,直線與軸分別交于兩點,求證:線段的中點為定點,并求出面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
畫出約束條件的可行域,利用目標函數的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區域,如圖示:如圖點坐標分別為,目標函數的幾何意義為,可行域內點與坐標原點的距離的平方,由圖可知到原點的距離最大,故.故選:D【點睛】本題考查了簡單的線性規劃問題,考查數形結合思想,屬于中檔題.2、B【解析】
由圓過原點,知中有一點與原點重合,作出圖形,由,,得,從而直線傾斜角為,寫出點坐標,代入拋物線方程求出參數,可得點坐標,從而得三角形面積.【詳解】由題意圓過原點,所以原點是圓與拋物線的一個交點,不妨設為,如圖,由于,,∴,∴,,∴點坐標為,代入拋物線方程得,,∴,.故選:B.【點睛】本題考查拋物線與圓相交問題,解題關鍵是發現原點是其中一個交點,從而是等腰直角三角形,于是可得點坐標,問題可解,如果僅從方程組角度研究兩曲線交點,恐怕難度會大大增加,甚至沒法求解.3、C【解析】
根據題意,由函數的奇偶性可得,,又由,結合函數的單調性分析可得答案.【詳解】根據題意,函數是定義在上的偶函數,則,,有,又由在上單調遞增,則有,故選C.【點睛】本題主要考查函數的奇偶性與單調性的綜合應用,注意函數奇偶性的應用,屬于基礎題.4、C【解析】
由等差數列的性質可得,根據等差數列的前項和公式可得結果.【詳解】∵等差數列中,,∴,即,∴,故選C.【點睛】本題主要考查了等差數列的性質以及等差數列的前項和公式的應用,屬于基礎題.5、B【解析】
根據題意,畫出幾何圖形,根據向量加法的線性運算即可求解.【詳解】根據題意,可得幾何關系如下圖所示:,故選:B【點睛】本題考查了向量加法的線性運算,屬于基礎題.6、C【解析】
依題意可得,即函數圖像關于對稱,再求出函數的導函數,即可判斷函數的單調性;【詳解】解:由,,所以函數圖像關于對稱,又,在上不單調.故正確的只有C,故選:C【點睛】本題考查函數的對稱性的判定,利用導數判斷函數的單調性,屬于基礎題.7、A【解析】
根據充分條件和必要條件的定義,結合線面垂直的性質進行判斷即可.【詳解】當m⊥平面α時,若l∥α”則“l⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l∥α”是“l⊥m”充分不必要條件,故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結合線面垂直的性質和定義是解決本題的關鍵.難度不大,屬于基礎題8、C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點:直線與直線的位置關系9、B【解析】
由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因為四邊形為菱形,,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B【點睛】此題考查的是求雙曲線的漸近線方程,利用了數形結合的思想,屬于基礎題.10、D【解析】
畫出曲線x=y-2+1與x=3圍成的封閉區域,y+1x-2表示封閉區域內的點(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區域內的點(x,y)和定點P(2,-1)設k=y+1x-2,結合圖形可得k≥k由題意得點A,B的坐標分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點睛】解答本題的關鍵有兩個:一是根據數形結合的方法求解問題,即把y+1x-211、C【解析】
根據三角函數的變換規則表示出,根據是奇函數,可得的取值,再求其最小值.【詳解】解:由題意知,將函數的圖像向右平移個單位長度,得,再將圖像上各點的橫坐標伸長到原來的6倍(縱坐標不變),得到函數的圖像,,因為是奇函數,所以,解得,因為,所以的最小值為.故選:【點睛】本題考查三角函數的變換以及三角函數的性質,屬于基礎題.12、D【解析】
先計算,然后將進行平方,,可得結果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數量積的運算和模的計算,屬基礎題。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
從7人中選出2人則總數有,符合條件數有,后者除以前者即得結果【詳解】從7人中隨機選出2人的總數有,則記選出的名同學中恰好名男生名女生的概率為事件,∴故答案為:【點睛】組合數與概率的基本運用,熟悉組合數公式14、【解析】
畫圖分析可得函數是偶函數,且在上單調遞減,利用偶函數性質和單調性可解.【詳解】作出函數的圖如下所示,觀察可知,函數為偶函數,且在上單調遞增,在上單調遞減,故,故實數的取值范圍為.故答案為:【點睛】本題考查利用函數奇偶性及單調性解不等式.函數奇偶性的常用結論:(1)如果函數是偶函數,那么.(2)奇函數在兩個對稱的區間上具有相同的單調性;偶函數在兩個對稱的區間上具有相反的單調性.15、2【解析】
作出可行域,平移基準直線到處,求得的最小值.【詳解】畫出可行域如下圖所示,由圖可知平移基準直線到處時,取得最小值為.故答案為:【點睛】本小題主要考查線性規劃求最值,考查數形結合的數學思想方法,屬于基礎題.16、【解析】
根據正弦定理得,根據余弦定理得2PF1?PF2cos∠F1PF23,聯立方程得到,計算得到答案.【詳解】∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1?PF2cos∠F1PF23,②①②聯解,得,可得,∴雙曲線的,結合,得離心率.故答案為:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和轉化能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)由,利用余弦定理可得,結合可得結果;(2)由正弦定理,,利用三角形內角和定理可得,由三角形面積公式可得結果.【詳解】(1)由題意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.【點睛】本題主要考查正弦定理、余弦定理及特殊角的三角函數,屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數有關的問題時,還需要記住等特殊角的三角函數值,以便在解題中直接應用.18、(1)或(2).【解析】
(1)根據題意分斜率不存在和斜率存在兩種情況即可求得結果;(2)先求出直線方程,然后求得圓心與直線的距離,由弦長公式即可得出答案.【詳解】解:(1)由題意可得,直線與圓相切當斜率不存在時,直線的方程為,滿足題意當斜率存在時,設直線的方程為,即∴,解得∴直線的方程為∴直線的方程為或(2)當直線的傾斜角為時,直線的方程為圓心到直線的距離為∴弦長為【點睛】本題考查了直線的方程、直線與圓的位置關系、點到直線的距離公式及弦長公式,培養了學生分析問題與解決問題的能力.19、(1)an=2n+1;(2)2.【解析】
(1)根據題意求出首項,再由(an+12+2an+1)﹣(an2+2an)=4an+1,求得該數列為等差數列即可求得通項公式;(2)利用錯位相減法進行數列求和.【詳解】(1)∵an2+2an=4Sn+1,∴a12+2a1=4S1+1,即,解得:a1=1或a1=﹣1(舍),又∵an+12+2an+1=4Sn+1+1,∴(an+12+2an+1)﹣(an2+2an)=4an+1,整理得:(an+1﹣an)(an+1+an)=2(an+1+an),又∵數列{an}的各項均為正,∴an+1﹣an=2,∴數列{an}是首項為1、公差為2的等差數列,∴數列{an}的通項公式an=1+2(n﹣1)=2n+1;(2)由(1)可知bn,記數列{bn}的前n項和為Tn,則Tn=1?5?(2n+1)?,Tn=1?5??…+(2n﹣1)?(2n+1)?,錯位相減得:Tn=1+2(?)﹣(2n+1)?=1+2,∴Tn()=2.【點睛】此題考查求等差數列的基本量,根據遞推關系判定等差數列,根據錯位相減進行數列求和,關鍵在于熟記方法準確計算.20、(Ⅰ),;(Ⅱ)詳見解析.【解析】
(Ⅰ)根據概率的性質知所有矩形的面積之和等于列式可解得;(Ⅱ)由頻率分布直方圖知樣本中獲獎的人數為,不獲獎的人數為,從而可得列聯表,再計算出,與臨界值比較可得.【詳解】解:(Ⅰ),.(Ⅱ)由頻率分布直方圖知樣本中獲獎的人數為,不獲獎的人數為,列聯表如下:女生男生總計獲獎不獲獎總計因為,所以在犯錯誤的概率不超過的前提下能認為“獲獎與女生,男生有關.”【點睛】本題主要考查獨立性檢驗,以及由頻率分布直方圖求平均數的問題,熟
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論