2025屆山西省太原五中高考沖刺模擬數學試題含解析_第1頁
2025屆山西省太原五中高考沖刺模擬數學試題含解析_第2頁
2025屆山西省太原五中高考沖刺模擬數學試題含解析_第3頁
2025屆山西省太原五中高考沖刺模擬數學試題含解析_第4頁
2025屆山西省太原五中高考沖刺模擬數學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山西省太原五中高考沖刺模擬數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.2.已知拋物線的焦點為,對稱軸與準線的交點為,為上任意一點,若,則()A.30° B.45° C.60° D.75°3.已知定點都在平面內,定點是內異于的動點,且,那么動點在平面內的軌跡是()A.圓,但要去掉兩個點 B.橢圓,但要去掉兩個點C.雙曲線,但要去掉兩個點 D.拋物線,但要去掉兩個點4.已知函數(,是常數,其中且)的大致圖象如圖所示,下列關于,的表述正確的是()A., B.,C., D.,5.對某兩名高三學生在連續9次數學測試中的成績(單位:分)進行統計得到折線圖,下面是關于這兩位同學的數學成績分析.①甲同學的成績折線圖具有較好的對稱性,故平均成績為130分;②根據甲同學成績折線圖提供的數據進行統計,估計該同學平均成績在區間110,120內;③乙同學的數學成績與測試次號具有比較明顯的線性相關性,且為正相關;④乙同學連續九次測驗成績每一次均有明顯進步.其中正確的個數為()A.4 B.3 C.2 D.16.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數組成的—個階方陣,其各行各列及兩條對角線所含的個數之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.457.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B8.已知全集,集合,則()A. B. C. D.9.已知定義在上的偶函數,當時,,設,則()A. B. C. D.10.關于圓周率,數學發展史上出現過許多很有創意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發,某同學通過下面的隨機模擬方法來估計的值:先用計算機產生個數對,其中,都是區間上的均勻隨機數,再統計,能與構成銳角三角形三邊長的數對的個數﹔最后根據統計數來估計的值.若,則的估計值為()A. B. C. D.11.不等式組表示的平面區域為,則()A., B.,C., D.,12.若雙曲線:繞其對稱中心旋轉后可得某一函數的圖象,則的離心率等于()A. B. C.2或 D.2或二、填空題:本題共4小題,每小題5分,共20分。13.已知內角的對邊分別為外接圓的面積為,則的面積為_________.14.已知函數的部分圖象如圖所示,則的值為____________.15.“石頭、剪子、布”是大家熟悉的二人游戲,其規則是:在石頭、剪子和布中,二人各隨機選出一種,若相同則平局;若不同,則石頭克剪子,剪子克布,布克石頭.甲、乙兩人玩一次該游戲,則甲不輸的概率是______.16.展開式中的系數為_________.(用數字做答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知頂點是坐標原點的拋物線的焦點在軸正半軸上,圓心在直線上的圓與軸相切,且關于點對稱.(1)求和的標準方程;(2)過點的直線與交于,與交于,求證:.18.(12分)已知數列中,a1=1,其前n項和為,且滿足.(1)求數列的通項公式;(2)記,若數列為遞增數列,求λ的取值范圍.19.(12分)如圖,三棱柱中,底面是等邊三角形,側面是矩形,是的中點,是棱上的點,且.(1)證明:平面;(2)若,求二面角的余弦值.20.(12分)已知函數.(1)時,求不等式解集;(2)若的解集包含于,求a的取值范圍.21.(12分)已知數列是等差數列,前項和為,且,.(1)求.(2)設,求數列的前項和.22.(10分)設前項積為的數列,(為常數),且是等差數列.(I)求的值及數列的通項公式;(Ⅱ)設是數列的前項和,且,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

畫出約束條件的可行域,利用目標函數的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【點睛】本題主要考查線性規劃的應用,利用z的幾何意義,通過數形結合是解決本題的關鍵.2、C【解析】

如圖所示:作垂直于準線交準線于,則,故,得到答案.【詳解】如圖所示:作垂直于準線交準線于,則,在中,,故,即.故選:.【點睛】本題考查了拋物線中角度的計算,意在考查學生的計算能力和轉化能力.3、A【解析】

根據題意可得,即知C在以AB為直徑的圓上.【詳解】,,,又,,平面,又平面,故在以為直徑的圓上,又是內異于的動點,所以的軌跡是圓,但要去掉兩個點A,B故選:A【點睛】本題主要考查了線面垂直、線線垂直的判定,圓的性質,軌跡問題,屬于中檔題.4、D【解析】

根據指數函數的圖象和特征以及圖象的平移可得正確的選項.【詳解】從題設中提供的圖像可以看出,故得,故選:D.【點睛】本題考查圖象的平移以及指數函數的圖象和特征,本題屬于基礎題.5、C【解析】

利用圖形,判斷折線圖平均分以及線性相關性,成績的比較,說明正誤即可.【詳解】①甲同學的成績折線圖具有較好的對稱性,最高130分,平均成績為低于130分,①錯誤;②根據甲同學成績折線圖提供的數據進行統計,估計該同學平均成績在區間[110,120]內,②正確;③乙同學的數學成績與測試次號具有比較明顯的線性相關性,且為正相關,③正確;④乙同學在這連續九次測驗中第四次、第七次成績較上一次成績有退步,故④不正確.故選:C.【點睛】本題考查折線圖的應用,線性相關以及平均分的求解,考查轉化思想以及計算能力,屬于基礎題.6、B【解析】

計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點睛】本小題主要考查合情推理與演繹推理,考查等差數列前項和公式,屬于基礎題.7、C【解析】試題分析:集合考點:集合間的關系8、D【解析】

根據函數定義域的求解方法可分別求得集合,由補集和交集定義可求得結果.【詳解】,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算問題,涉及到函數定義域的求解,屬于基礎題.9、B【解析】

根據偶函數性質,可判斷關系;由時,,求得導函數,并構造函數,由進而判斷函數在時的單調性,即可比較大小.【詳解】為定義在上的偶函數,所以所以;當時,,則,令則,當時,,則在時單調遞增,因為,所以,即,則在時單調遞增,而,所以,綜上可知,即,故選:B.【點睛】本題考查了偶函數的性質應用,由導函數性質判斷函數單調性的應用,根據單調性比較大小,屬于中檔題.10、B【解析】

先利用幾何概型的概率計算公式算出,能與構成銳角三角形三邊長的概率,然后再利用隨機模擬方法得到,能與構成銳角三角形三邊長的概率,二者概率相等即可估計出.【詳解】因為,都是區間上的均勻隨機數,所以有,,若,能與構成銳角三角形三邊長,則,由幾何概型的概率計算公式知,所以.故選:B.【點睛】本題考查幾何概型的概率計算公式及運用隨機數模擬法估計概率,考查學生的基本計算能力,是一個中檔題.11、D【解析】

根據題意,分析不等式組的幾何意義,可得其表示的平面區域,設,分析的幾何意義,可得的最小值,據此分析選項即可得答案.【詳解】解:根據題意,不等式組其表示的平面區域如圖所示,其中,,

設,則,的幾何意義為直線在軸上的截距的2倍,

由圖可得:當過點時,直線在軸上的截距最大,即,當過點原點時,直線在軸上的截距最小,即,故AB錯誤;

設,則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質以及應用,關鍵是對目標函數幾何意義的認識,屬于基礎題.12、C【解析】

由雙曲線的幾何性質與函數的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結果.【詳解】由雙曲線的幾何性質與函數的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點既可在軸,又可在軸上,所以或,或.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,函數的概念,考查了分類討論的數學思想.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內角,從而有,于是可得三角形邊長,可得面積.【詳解】設外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.【點睛】本題考查正弦定理,利用正弦定理求出三角形的內角,然后可得邊長,從而得面積,掌握正弦定理是解題關鍵.14、【解析】

由圖可得的周期、振幅,即可得,再將代入可解得,進一步求得解析式及.【詳解】由圖可得,,所以,即,又,即,,又,故,所以,.故答案為:【點睛】本題考查由圖象求解析式及函數值,考查學生識圖、計算等能力,是一道中檔題.15、【解析】

用樹狀圖法列舉出所有情況,得出甲不輸的結果數,再計算即得.【詳解】由題得,甲、乙兩人玩一次該游戲,共有9種情況,其中甲不輸有6種可能,故概率為.故答案為:【點睛】本題考查隨機事件的概率,是基礎題.16、210【解析】

轉化,只有中含有,即得解.【詳解】只有中含有,其中的系數為故答案為:210【點睛】本題考查了二項式系數的求解,考查了學生概念理解,轉化劃歸,數學運算的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)證明見解析.【解析】分析:(1)設的標準方程為,由題意可設.結合中點坐標公式計算可得的標準方程為.半徑,則的標準方程為.(2)設的斜率為,則其方程為,由弦長公式可得.聯立直線與拋物線的方程有.設,利用韋達定理結合弦長公式可得.則.即.詳解:(1)設的標準方程為,則.已知在直線上,故可設.因為關于對稱,所以解得所以的標準方程為.因為與軸相切,故半徑,所以的標準方程為.(2)設的斜率為,那么其方程為,則到的距離,所以.由消去并整理得:.設,則,那么.所以.所以,即.點睛:(1)直線與拋物線的位置關系和直線與橢圓、雙曲線的位置關系類似,一般要用到根與系數的關系;(2)有關直線與拋物線的弦長問題,要注意直線是否過拋物線的焦點,若過拋物線的焦點,可直接使用公式|AB|=x1+x2+p,若不過焦點,則必須用一般弦長公式.18、(1)(2)【解析】

(1)項和轉換可得,繼而得到,可得解;(2)代入可得,由數列為遞增數列可得,,令,可證明為遞增數列,即,即得解【詳解】(1)∵,∴,∴,即,∴,∴,∴.(2).=2·-λ(2n+1).∵數列為遞增數列,∴,即.令,即.∴為遞增數列,∴,即的取值范圍為.【點睛】本題考查了數列綜合問題,考查了項和轉換,數列的單調性,最值等知識點,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于較難題.19、(1)見解析(2)【解析】

(1)連結BM,推導出BC⊥BB1,AA1⊥BC,從而AA1⊥MC,進而AA1⊥平面BCM,AA1⊥MB,推導出四邊形AMNP是平行四邊形,從而MN∥AP,由此能證明MN∥平面ABC.(2)推導出△ABA1是等腰直角三角形,設AB,則AA1=2a,BM=AM=a,推導出MC⊥BM,MC⊥AA1,BM⊥AA1,以M為坐標原點,MA1,MB,MC為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角A﹣CM﹣N的余弦值.【詳解】(1)如圖1,在三棱柱中,連結,因為是矩形,所以,因為,所以,又因為,,所以平面,所以,又因為,所以是中點,取中點,連結,,因為是的中點,則且,所以且,所以四邊形是平行四邊形,所以,又因為平面,平面,所以平面.(圖1)(圖2)(2)因為,所以是等腰直角三角形,設,則,.在中,,所以.在中,,所以,由(1)知,則,,如圖2,以為坐標原點,,,的方向分別為軸,軸,軸的正方向建立空間直角坐標系,則,,.所以,則,,設平面的法向量為,則即取得.故平面的一個法向量為,因為平面的一個法向量為,則.因為二面角為鈍角,所以二面角的余弦值為.【點睛】本題考查線面平行的證明,考查了利用空間向量法求解二面角的方法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.20、(1)(2)【解析】

(1)代入可得對分類討論即可得不等式的解集;(2)根據不等式在上恒成立去絕對值化簡可得再去絕對值即可得關于的不等式組解不等式組即可求得的取值范圍【詳解】(1)當時,不等式可化為,①當時,不等式為,解得;②當時,不等式為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論