新高考數學二輪復習考點講義第二十六講圓錐曲線(原卷版)_第1頁
新高考數學二輪復習考點講義第二十六講圓錐曲線(原卷版)_第2頁
新高考數學二輪復習考點講義第二十六講圓錐曲線(原卷版)_第3頁
新高考數學二輪復習考點講義第二十六講圓錐曲線(原卷版)_第4頁
新高考數學二輪復習考點講義第二十六講圓錐曲線(原卷版)_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第二十六講:橢圓、雙曲線、拋物線【考點梳理】求曲線的軌跡方程直接法、定義法、相關點法橢圓方程橢圓相關計算(1)橢圓標準方程中的三個量SKIPIF1<0的幾何意義SKIPIF1<0(2)通徑:過焦點且垂直于長軸的弦,其長SKIPIF1<0焦點弦:橢圓過焦點的弦。最短的焦點弦為通經SKIPIF1<0,最長為SKIPIF1<0。(3)最大角:SKIPIF1<0是橢圓上一點,當SKIPIF1<0是橢圓的短軸端點時,SKIPIF1<0為最大角。(4)橢圓上一點和兩個焦點構成的三角形稱為焦點三角形。焦點三角形的面積SKIPIF1<0,其中SKIPIF1<0(注意公式的推導)雙曲線(1)雙曲線的通徑過雙曲線的焦點且與雙曲線實軸垂直的直線被雙曲線截得的線段,稱為雙曲線的通徑.通徑長為SKIPIF1<0.(2)點與雙曲線的位置關系對于雙曲線SKIPIF1<0,點SKIPIF1<0在雙曲線內部,等價于SKIPIF1<0.點SKIPIF1<0在雙曲線外部,等價于SKIPIF1<0結合線性規劃的知識點來分析.(3)雙曲線常考性質性質1:雙曲線的焦點到兩條漸近線的距離為常數SKIPIF1<0;頂點到兩條漸近線的距離為常數SKIPIF1<0;性質2:雙曲線上的任意點SKIPIF1<0到雙曲線C的兩條漸近線的距離的乘積是一個常數SKIPIF1<0;(4)雙曲線焦點三角形面積為SKIPIF1<0(可以這樣理解,頂點越高,張角越小,分母越小,面積越大)(5)雙曲線的切線點SKIPIF1<0在雙曲線SKIPIF1<0SKIPIF1<0上,過點SKIPIF1<0作雙曲線的切線方程為SKIPIF1<0.若點SKIPIF1<0在雙曲線SKIPIF1<0SKIPIF1<0外,則點SKIPIF1<0對應切點弦方程為SKIPIF1<0拋物線(1)、焦半徑拋物線上的點SKIPIF1<0與焦點SKIPIF1<0的距離稱為焦半徑,若SKIPIF1<0,則焦半徑SKIPIF1<0,SKIPIF1<0.(2)、焦點弦若SKIPIF1<0為拋物線SKIPIF1<0的焦點弦,SKIPIF1<0,SKIPIF1<0,則有以下結論:(1)SKIPIF1<0.(2)SKIPIF1<0.(3)焦點弦長公式1:SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,焦點弦取最小值SKIPIF1<0,即所有焦點弦中通徑最短,其長度為SKIPIF1<0.焦點弦長公式2:SKIPIF1<0(SKIPIF1<0為直線SKIPIF1<0與對稱軸的夾角).(4)SKIPIF1<0的面積公式:SKIPIF1<0(SKIPIF1<0為直線SKIPIF1<0與對稱軸的夾角).(3)、拋物線的通徑過焦點且垂直于拋物線對稱軸的弦叫做拋物線的通徑.對于拋物線SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,故拋物線的通徑長為SKIPIF1<0.(4)、弦的中點坐標與弦所在直線的斜率的關系:SKIPIF1<0(5)、焦點弦的常考性質已知SKIPIF1<0、SKIPIF1<0是過拋物線SKIPIF1<0焦點SKIPIF1<0的弦,SKIPIF1<0是SKIPIF1<0的中點,SKIPIF1<0是拋物線的準線,SKIPIF1<0,SKIPIF1<0為垂足.(1)以SKIPIF1<0為直徑的圓必與準線SKIPIF1<0相切,以AF(或BF)為直徑的圓與y軸相切;(2)SKIPIF1<0,SKIPIF1<0(3)SKIPIF1<0;SKIPIF1<0(4)設SKIPIF1<0,SKIPIF1<0為垂足,則SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點在一條直線上【典型題型講解】考點一:橢圓【典例例題】例1.(2022·廣東清遠·高三期末)若橢圓SKIPIF1<0的焦距為6,則實數SKIPIF1<0(

)A.13 B.40 C.5 D.SKIPIF1<0例2.(2022·廣東珠海·高三期末)已知橢圓SKIPIF1<0的長軸長為4,左頂點A到上頂點B的距離為SKIPIF1<0,F為右焦點.(1)求橢圓C的方程和離心率;(2)設直線l與橢圓C交于不同的兩點M,N(不同于A,B兩點),且直線SKIPIF1<0時,求F在l上的射影H的軌跡方程.【方法技巧與總結】標準方程SKIPIF1<0SKIPIF1<0圖形性質焦點SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0焦距SKIPIF1<0SKIPIF1<0范圍SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0對稱性關于SKIPIF1<0軸、SKIPIF1<0軸和原點對稱頂點SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0軸長軸長SKIPIF1<0SKIPIF1<0,短軸長SKIPIF1<0SKIPIF1<0離心率SKIPIF1<0(注:離心率越小越圓,越大越扁)【變式訓練】1.(2022·廣東佛山·高三期末)(多選)已知橢圓SKIPIF1<0的左?右焦點分別為SKIPIF1<0,上頂點為B,且SKIPIF1<0,點P在C上,線段SKIPIF1<0與SKIPIF1<0交于Q,SKIPIF1<0,則(

)A.橢圓C的離心率為SKIPIF1<0 B.橢圓C上存在點K,使得SKIPIF1<0C.直線SKIPIF1<0的斜率為SKIPIF1<0 D.SKIPIF1<0平分SKIPIF1<02.(2022·廣東·金山中學高三期末)已知橢圓SKIPIF1<0:SKIPIF1<0與圓SKIPIF1<0:SKIPIF1<0,若在橢圓SKIPIF1<0上不存在點P,使得由點P所作的圓SKIPIF1<0的兩條切線互相垂直,則橢圓SKIPIF1<0的離心率的取值范圍是________.3.(2022·廣東汕尾·高三期末)已知SKIPIF1<0分別是橢圓C:SKIPIF1<0的左、右兩個焦點,若橢圓C上存在四個不同的點P,使得SKIPIF1<0,的面積為SKIPIF1<0,則正實數m的取值范圍為______.4.(2022·廣東肇慶·二模)已知點SKIPIF1<0,SKIPIF1<0分別是橢圓SKIPIF1<0的左、右焦點,點A是橢圓上一點,點О為坐標原點,若SKIPIF1<0,直線SKIPIF1<0的斜率為SKIPIF1<0,則橢圓C的離心率為(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2022·廣東汕頭·二模)已知橢圓C的左、右焦點分別為SKIPIF1<0,SKIPIF1<0,直線AB過SKIPIF1<0與該橢圓交于A,B兩點,當SKIPIF1<0為正三角形時,該橢圓的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·廣東中山·高三期末)已知橢圓SKIPIF1<0的右焦點為SKIPIF1<0,離心率為SKIPIF1<0,直線SKIPIF1<0被橢圓截得的弦長為SKIPIF1<0SKIPIF1<0求橢圓SKIPIF1<0的標準方程SKIPIF1<0若SKIPIF1<0是橢圓SKIPIF1<0上一點,SKIPIF1<0是坐標原點,過點SKIPIF1<0與直線SKIPIF1<0平行的直線與橢圓SKIPIF1<0的兩個交點為SKIPIF1<0,且SKIPIF1<0,求SKIPIF1<0的最大值7.(2022·廣東·金山中學高三期末)在平面直角坐標系xOy中,橢圓C:SKIPIF1<0的左,右頂點分別為A、B,點F是橢圓的右焦點,SKIPIF1<0,SKIPIF1<0.(1)求橢圓C的方程;(2)不過點A的直線l交橢圓C于M、N兩點,記直線l、AM、AN的斜率分別為k、SKIPIF1<0、SKIPIF1<0.若SKIPIF1<0,證明直線l過定點,并求出定點的坐標.8.(2022·廣東潮州·高三期末)已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,以原點O為圓心,橢圓C的長半軸長為半徑的圓與直線SKIPIF1<0相切.(1)求橢圓C的標準方程;(2)已知點A,B為動直線y=k(x-2)(k≠0)與橢圓C的兩個交點,問:在x軸上是否存在定點E,使得SKIPIF1<0為定值?若存在,試求出點E的坐標和定值;若不存在,請說明理由.9.(2022·廣東東莞·高三期末)已知點SKIPIF1<0為橢圓SKIPIF1<0的左頂點,點SKIPIF1<0為右焦點,直線SKIPIF1<0與SKIPIF1<0軸的交點為SKIPIF1<0,且SKIPIF1<0,點SKIPIF1<0為橢圓上異于點SKIPIF1<0的任意一點,直線SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0.(1)求橢圓SKIPIF1<0的標準方程;(2)證明:SKIPIF1<0.10.(2022·廣東深圳·高三期末)在平面直角坐標系SKIPIF1<0中,點SKIPIF1<0在橢圓SKIPIF1<0上,過點SKIPIF1<0的直線l與C交于M,N兩點(異于點A),記直線AM,AN的斜率分別為SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0.(1)求C的方程;(2)證明:SKIPIF1<0為定值.11.(2021·廣東汕頭·高三期末)已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,又點SKIPIF1<0在橢圓SKIPIF1<0上.(1)求橢圓SKIPIF1<0的標準方程;(2)若動直線SKIPIF1<0與橢圓SKIPIF1<0有且只有一個公共點,過點SKIPIF1<0作直線SKIPIF1<0的垂線,垂足為SKIPIF1<0,試探究:SKIPIF1<0是否為定值,如果是,請求出該值;如果不是,請說明理由.12.(2022·廣東潮州·二模)設橢圓SKIPIF1<0為左右焦點,SKIPIF1<0為短軸端點,長軸長為4,焦距為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0.(Ⅰ)求橢圓SKIPIF1<0的方程(Ⅱ)設動直線SKIPIF1<0橢圓SKIPIF1<0有且僅有一個公共點SKIPIF1<0,且與直線SKIPIF1<0相交于點SKIPIF1<0.試探究:在坐標平面內是否存在定點SKIPIF1<0,使得以SKIPIF1<0為直徑的圓恒過點SKIPIF1<0?若存在求出點SKIPIF1<0的坐標,若不存在.請說明理由.考點二:雙曲線【典例例題】例1.(2022·廣東珠海·高三期末)雙曲線SKIPIF1<0的右支上一點M關于原點O的對稱點為點N,F為雙曲線的右焦點,若SKIPIF1<0,SKIPIF1<0,則雙曲線C的離心率e為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例2.(2022·廣東佛山·高三期末)已知雙曲線C的漸近線方程為SKIPIF1<0,且過點SKIPIF1<0.(1)求C的方程;(2)設SKIPIF1<0,直線SKIPIF1<0不經過P點且與C相交于A,B兩點,若直線SKIPIF1<0與C交于另一點D,求證:直線SKIPIF1<0過定點.【方法技巧與總結】1.雙曲線的定義:焦點三角形2.雙曲線的性質:離心率、雙曲線的漸近線【變式訓練】1.(2022·廣東潮州·高三期末)SKIPIF1<0、SKIPIF1<0分別為雙曲線SKIPIF1<0的左、右焦點,過SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0的左、右兩支曲線分別交于SKIPIF1<0、SKIPIF1<0兩點,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·廣東汕尾·高三期末)已知雙曲線SKIPIF1<0的漸近線方程為SKIPIF1<0,則該雙曲線的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.23.(2022·廣東清遠·高三期末)(多選)已知雙曲線SKIPIF1<0的左、右焦點分別為SKIPIF1<0,點P是雙曲線C上位于第一象限的點,過點SKIPIF1<0作SKIPIF1<0的角平分線的垂線,垂足為A,若O為坐標原點,SKIPIF1<0,則(

)A.雙曲線C的漸近線方程為SKIPIF1<0B.雙曲線C的漸近線方程為SKIPIF1<0C.雙曲線C的離心率為SKIPIF1<0D.雙曲線C的離心率為SKIPIF1<04.(2022·廣東東莞·高三期末)已知SKIPIF1<0為雙曲線SKIPIF1<0:SKIPIF1<0的一個焦點,則點SKIPIF1<0到雙曲線SKIPIF1<0的一條漸近線的距離為_______.5.(2022·廣東深圳·高三期末)在平面直角坐標系SKIPIF1<0中,SKIPIF1<0為雙曲線SKIPIF1<0的一個焦點,以SKIPIF1<0為圓心的圓與SKIPIF1<0的兩條漸近線交于SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點,若四邊形SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0的離心率為______.6.(2022·廣東中山·高三期末)已知點M為雙曲線C:SKIPIF1<0在第一象限上一點,點F為雙曲線C的右焦點,O為坐標原點,SKIPIF1<0,則雙曲線C的離心率為___________;若SKIPIF1<0分別交雙曲線C于P、Q兩點,記直線QM與PQ的斜率分別為SKIPIF1<0,則SKIPIF1<0___________.29.(2022·廣東深圳·一模)已知雙曲線SKIPIF1<0:SKIPIF1<0經過點ASKIPIF1<0,且點SKIPIF1<0到SKIPIF1<0的漸近線的距離為SKIPIF1<0.(1)求雙曲線C的方程;(2)過點SKIPIF1<0作斜率不為SKIPIF1<0的直線SKIPIF1<0與雙曲線SKIPIF1<0交于M,N兩點,直線SKIPIF1<0分別交直線AM,AN于點E,F.試判斷以EF為直徑的圓是否經過定點,若經過定點,請求出定點坐標;反之,請說明理由.考點三:拋物線【典例例題】例1.(2022·廣東惠州·一模)若拋物線SKIPIF1<0(SKIPIF1<0)上一點P(2,SKIPIF1<0)到其焦點的距離為4,則拋物線的標準方程為(

)A.y2=2x B.y2=4x C.y2=6x D.y2=8x例2.(2022·廣東韶關·一模)已知在平面直角坐標系中,有兩定點SKIPIF1<0,動點SKIPIF1<0滿足SKIPIF1<0.(1)求動點SKIPIF1<0的軌跡SKIPIF1<0的方程;(2)若拋物線SKIPIF1<0與軌跡SKIPIF1<0按順時針方向依次交于四點SKIPIF1<0(點SKIPIF1<0在第一象限).①求證:直線SKIPIF1<0與直線SKIPIF1<0相交于SKIPIF1<0點;②設SKIPIF1<0的面積為S,求S取最大值時的拋物線方程.【方法技巧與總結】1.拋物線的定義:到準線與到定點距離相等.2.拋物線的性質:焦點弦長【變式訓練】1.(2022·廣東廣州·一模)設拋物線SKIPIF1<0的焦點為F,過點SKIPIF1<0的直線與E相交于A,B兩點,與E的準線相交于點C,點B在線段AC上,SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的面積之比SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·廣東廣東·一模)已知O為坐標原點,F為拋物線SKIPIF1<0的焦點,P為C上一點,若SKIPIF1<0,則點F到直線PO的距離為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·廣東茂名·一模)(多選)已知拋物線C:SKIPIF1<0的焦點為SKIPIF1<0,準線為SKIPIF1<0,P是拋物線SKIPIF1<0上第一象限的點,SKIPIF1<0,直線PF與拋物線C的另一個交點為Q,則下列選項正確的是(

)A.點P的坐標為(4,4)B.SKIPIF1<0C.SKIPIF1<0D.過點SKIPIF1<0作拋物線SKIPIF1<0的兩條切線SKIPIF1<0,其中SKIPIF1<0為切點,則直線SKIPIF1<0的方程為:SKIPIF1<04.(2022·廣東·一模)(多選)已知拋物線SKIPIF1<0的焦點為F,拋物線C上存在n個點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)滿足SKIPIF1<0,則下列結論中正確的是(

)A.SKIPIF1<0時,SKIPIF1<0B.SKIPIF1<0時,SKIPIF1<0的最小值為9C.SKIPIF1<0時,SKIPIF1<0D.SKIPIF1<0時,SKIPIF1<0的最小值為85.(2022·廣東湛江·一模)(多選)已知F是拋物線SKIPIF1<0的焦點,過點F作兩條互相垂直的直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與C相交于A,B兩點,SKIPIF1<0與C相交于E,D兩點,M為A,B中點,N為E,D中點,直線l為拋物線C的準線,則(

)A.點M到直線l的距離為定值 B.以SKIPIF1<0為直徑的圓與l相切C.SKIPIF1<0的最小值為32 D.當SKIPIF1<0最小時,SKIPIF1<06.(2022·廣東深圳·一模)(多選)已知定圓A的半徑為1,圓心A到定直線l的距離為d,動圓C與圓A和直線l都相切,圓心C的軌跡為如圖所示的兩條拋物線,記這兩拋物線的焦點到對應準線的距離分別為SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【鞏固練習】一、單選題1.橢圓SKIPIF1<0:SKIPIF1<0的左、右焦點分別為SKIPIF1<0,SKIPIF1<0,經過點SKIPIF1<0的直線與橢圓SKIPIF1<0相交于A,SKIPIF1<0兩點,若SKIPIF1<0的周長為16,則橢圓SKIPIF1<0的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.已知橢圓SKIPIF1<0的左右焦點分別SKIPIF1<0,左頂點為A,上頂點為B,點P為橢圓上一點,且SKIPIF1<0,若SKIPIF1<0,則橢圓的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.已知SKIPIF1<0分別為橢圓SKIPIF1<0的左右焦點,點P為橢圓上一點,以SKIPIF1<0為圓心的圓與直線SKIPIF1<0恰好相切于點P,則SKIPIF1<0是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.明朝的一個葡萄紋橢圓盤如圖(1)所示,清朝的一個青花山水樓閣紋飾橢圓盤如圖(2)所示,北宋的一個汝窯橢圓盤如圖(3)所示,這三個橢圓盤的外輪廊均為橢圓.已知圖(1)?(2)?(3)中橢圓的長軸長與短軸長的比值分別SKIPIF1<0,設圖(1)?(2)?(3)中橢圓的離心率分別為SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.設F為橢圓SKIPIF1<0的右焦點,點SKIPIF1<0,點B在C上,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.設橢圓SKIPIF1<0長軸的兩個頂點分別為SKIPIF1<0、SKIPIF1<0,點SKIPIF1<0為橢圓上不同于SKIPIF1<0、SKIPIF1<0的任一點,若將SKIPIF1<0的三個內角記作SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,且滿足SKIPIF1<0,則橢圓的離心率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.已知直線SKIPIF1<0過拋物線SKIPIF1<0:SKIPIF1<0的焦點,且與該拋物線交于SKIPIF1<0兩點.若線段SKIPIF1<0的長為16,SKIPIF1<0的中點到SKIPIF1<0軸距離為6,則SKIPIF1<0(SKIPIF1<0為坐標原點)的面積是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.過拋物線SKIPIF1<0的焦點F作直線l,交拋物線于A,B兩點,若SKIPIF1<0,則直線l的傾斜角等于(

)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.與p值有關二、多選題9.已知SKIPIF1<0為橢圓的焦點,SKIPIF1<0,SKIPIF1<0分別為橢圓的兩個頂點(且SKIPIF1<0不是離SKIPIF1<0最近的那個頂點),若SKIPIF1<0,SKIPIF1<0,則橢圓的離心率可以為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.設圓錐曲線C的兩個焦點分別為SKIPIF1<0,若曲線C上存在點P滿足SKIPIF1<0,則曲線C的離心率可以是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.23.雙曲線SKIPIF1<0的左,右焦點分別為SKIPIF1<0,SKIPIF1<0,點P在C上.若SKIPIF1<0是直角三角形,則SKIPIF1<0的面積為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.4 D.24.已知橢圓SKIPIF1<0的左、右焦點分別為SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上一點,則(

)A.SKIPIF1<0的離心率為SKIPIF1<0 B.SKIPIF1<0的周長為SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.已知拋物線C:SKIPIF1<0,過其準線上的點T(1,-1)作C的兩條切線,切點分別為A、B,下列說法正確的是(

)A.p=1 B.拋物線的焦點為F(0,1)C.SKIPIF1<0 D.直線AB的斜率為SKIPIF1<0三、填空題1.與雙曲線SKIPIF1<0有相同的焦點,且短半軸長為SKIPIF1<0的橢圓方程是________.2.已知橢圓SKIPIF1<0:SKIPIF1<0的焦點為SKIPIF1<0,SKIPIF1<0.過SKIPIF1<0且傾斜角為60°的直線交橢圓的上半部分于點SKIPIF1<0,以SKIPIF1<0,SKIPIF1<0(SKIPIF1<0為坐標原點)為鄰邊作平行四邊形SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論