江蘇省無錫市江陰市澄東片2024屆十校聯考最后數學試題含解析_第1頁
江蘇省無錫市江陰市澄東片2024屆十校聯考最后數學試題含解析_第2頁
江蘇省無錫市江陰市澄東片2024屆十校聯考最后數學試題含解析_第3頁
江蘇省無錫市江陰市澄東片2024屆十校聯考最后數學試題含解析_第4頁
江蘇省無錫市江陰市澄東片2024屆十校聯考最后數學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省無錫市江陰市澄東片2024屆十校聯考最后數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.把一個多邊形紙片沿一條直線截下一個三角形后,變成一個18邊形,則原多邊形紙片的邊數不可能是()A.16 B.17 C.18 D.192.小明乘出租車去體育場,有兩條路線可供選擇:路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時的平均車速能提高80%,因此能比走路線一少用10分鐘到達.若設走路線一時的平均速度為x千米/小時,根據題意,得A.25x-C.30(1+80%)x-3.某種商品每件的標價是270元,按標價的八折銷售時,仍可獲利20%,則這種商品每件的進價為()A.180元 B.200元 C.225元 D.259.2元4.在一個直角三角形中,有一個銳角等于45°,則另一個銳角的度數是()A.75° B.60° C.45° D.30°5.下列四個式子中,正確的是()A.=±9 B.﹣=6 C.()2=5 D.=46.已知二次函數y=x2+bx﹣9圖象上A、B兩點關于原點對稱,若經過A點的反比例函數的解析式是y=,則該二次函數的對稱軸是直線()A.x=1 B.x= C.x=﹣1 D.x=﹣7.若※是新規定的某種運算符號,設a※b=b2-a,則-2※x=6中x的值()A.4 B.8 C.2 D.-28.如圖的幾何體是由一個正方體切去一個小正方體形成的,它的主視圖是()A. B. C. D.9.反比例函數y=(a>0,a為常數)和y=在第一象限內的圖象如圖所示,點M在y=的圖象上,MC⊥x軸于點C,交y=的圖象于點A;MD⊥y軸于點D,交y=的圖象于點B,當點M在y=的圖象上運動時,以下結論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當點A是MC的中點時,則點B是MD的中點.其中正確結論的個數是()A.0 B.1 C.2 D.310.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.有兩名學員小林和小明練習射擊,第一輪10槍打完后兩人打靶的環數如圖所示,通常新手的成績不太穩定,那么根據圖中的信息,估計小林和小明兩人中新手是_______.12.如圖,在正方形ABCD中,O是對角線AC、BD的交點,過O點作OE⊥OF,OE、OF分別交AB、BC于點E、點F,AE=3,FC=2,則EF的長為_____.13.不透明袋子中裝有個球,其中有個紅球、個綠球和個黑球,這些球除顏色外無其他差別.從袋子中隨機取出個球,則它是黑球的概率是_____.14.化簡:x2-4x+4x15.如圖,在Rt△ABC中,∠ACB=90°,D是AB的中點,過D點作AB的垂線交AC于點E,BC=6,sinA=,則DE=_____.16.如圖,在正方形ABCD中,AD=5,點E,F是正方形ABCD內的兩點,且AE=FC=3,BE=DF=4,則EF的長為__________.17.如圖,點P是邊長為2的正方形ABCD的對角線BD上的動點,過點P分別作PE⊥BC于點E,PF⊥DC于點F,連接AP并延長,交射線BC于點H,交射線DC于點M,連接EF交AH于點G,當點P在BD上運動時(不包括B、D兩點),以下結論:①MF=MC;②AH⊥EF;③AP2=PM?PH;④EF的最小值是.其中正確的是________.(把你認為正確結論的序號都填上)三、解答題(共7小題,滿分69分)18.(10分)我們來定義一種新運算:對于任意實數x、y,“※”為a※b=(a+1)(b+1)﹣1.(1)計算(﹣3)※9(2)嘉琪研究運算“※”之后認為它滿足交換律,你認為她的判斷(正確、錯誤)(3)請你幫助嘉琪完成她對運算“※”是否滿足結合律的證明.19.(5分)如圖,二次函數的圖象與x軸交于A、B兩點,與y軸交于點C,已知點A(﹣4,0).求拋物線與直線AC的函數解析式;若點D(m,n)是拋物線在第二象限的部分上的一動點,四邊形OCDA的面積為S,求S關于m的函數關系式;若點E為拋物線上任意一點,點F為x軸上任意一點,當以A、C、E、F為頂點的四邊形是平行四邊形時,請求出滿足條件的所有點E的坐標.20.(8分)在數學課上,老師提出如下問題:小楠同學的作法如下:老師說:“小楠的作法正確.”請回答:小楠的作圖依據是______________________________________________.21.(10分)已知:如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B兩點(A在B左),y軸交于點C(0,-3).(1)求拋物線的解析式;(2)若點D是線段BC下方拋物線上的動點,求四邊形ABCD面積的最大值;(3)若點E在x軸上,點P在拋物線上.是否存在以B、C、E、P為頂點且以BC為一邊的平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.22.(10分)在直角坐標系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結OB,點D為OB的中點,點E是線段AB上的動點,連結DE,作DF⊥DE,交OA于點F,連結EF.已知點E從A點出發,以每秒1個單位長度的速度在線段AB上移動,設移動時間為t秒.如圖1,當t=3時,求DF的長.如圖2,當點E在線段AB上移動的過程中,∠DEF的大小是否發生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.連結AD,當AD將△DEF分成的兩部分的面積之比為1:2時,求相應的t的值.23.(12分)龐亮和李強相約周六去登山,龐亮從北坡山腳C處出發,以24米/分鐘的速度攀登,同時,李強從南坡山腳B處出發.如圖,已知小山北坡的坡度,山坡長為240米,南坡的坡角是45°.問李強以什么速度攀登才能和龐亮同時到達山頂A?(將山路AB、AC看成線段,結果保留根號)24.(14分)為了獎勵優秀班集體,學校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116元,購買3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的單價各是多少元?若學校購買5副乒乓球拍和3副羽毛球拍,一共應支出多少元?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

一個n邊形剪去一個角后,剩下的形狀可能是n邊形或(n+1)邊形或(n-1)邊形.故當剪去一個角后,剩下的部分是一個18邊形,則這張紙片原來的形狀可能是18邊形或17邊形或19邊形,不可能是16邊形.故選A.【點睛】此題主要考查了多邊形,減去一個角的方法可能有三種:經過兩個相鄰點,則少了一條邊;經過一個頂點和一邊,邊數不變;經過兩條鄰邊,邊數增加一條.2、A【解析】若設走路線一時的平均速度為x千米/小時,根據路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時的平均車速能提高80%,因此能比走路線一少用10分鐘到達可列出方程.解:設走路線一時的平均速度為x千米/小時,25故選A.3、A【解析】

設這種商品每件進價為x元,根據題中的等量關系列方程求解.【詳解】設這種商品每件進價為x元,則根據題意可列方程270×0.8-x=0.2x,解得x=180.故選A.【點睛】本題主要考查一元一次方程的應用,解題的關鍵是確定未知數,根據題中的等量關系列出正確的方程.4、C【解析】

根據直角三角形兩銳角互余即可解決問題.【詳解】解:∵直角三角形兩銳角互余,∴另一個銳角的度數=90°﹣45°=45°,故選C.【點睛】本題考查直角三角形的性質,記住直角三角形兩銳角互余是解題的關鍵.5、D【解析】

A、表示81的算術平方根;B、先算-6的平方,然后再求?的值;C、利用完全平方公式計算即可;D、=.【詳解】A、=9,故A錯誤;B、-=?=-6,故B錯誤;C、()2=2+2+3=5+2,故C錯誤;D、==4,故D正確.故選D.【點睛】本題主要考查的是實數的運算,掌握算術平方根、平方根和二次根式的性質以及完全平方公式是解題的關鍵.6、D【解析】

設A點坐標為(a,),則可求得B點坐標,把兩點坐標代入拋物線的解析式可得到關于a和b的方程組,可求得b的值,則可求得二次函數的對稱軸.【詳解】解:∵A在反比例函數圖象上,∴可設A點坐標為(a,).∵A、B兩點關于原點對稱,∴B點坐標為(﹣a,﹣).又∵A、B兩點在二次函數圖象上,∴代入二次函數解析式可得:,解得:或,∴二次函數對稱軸為直線x=﹣.故選D.【點睛】本題主要考查二次函數的性質,待定系數法求二次函數解析式,根據條件先求得b的值是解題的關鍵,注意掌握關于原點對稱的兩點的坐標的關系.7、C【解析】解:由題意得:,∴,∴x=±1.故選C.8、D【解析】試題分析:根據三視圖的法則可知B為俯視圖,D為主視圖,主視圖為一個正方形.9、D【解析】

根據反比例函數的性質和比例系數的幾何意義逐項分析可得出解.【詳解】①由于A、B在同一反比例函數y=圖象上,由反比例系數的幾何意義可得S△ODB=S△OCA=1,正確;②由于矩形OCMD、△ODB、△OCA為定值,則四邊形MAOB的面積不會發生變化,正確;③連接OM,點A是MC的中點,則S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面積相等,點B一定是MD的中點.正確;故答案選D.考點:反比例系數的幾何意義.10、B【解析】

陰影部分的面積=三角形的面積-扇形的面積,根據面積公式計算即可.【詳解】由旋轉可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故答案選:B.【點睛】本題考查的知識點是旋轉的性質及扇形面積的計算,解題的關鍵是熟練的掌握旋轉的性質及扇形面積的計算.二、填空題(共7小題,每小題3分,滿分21分)11、小林【解析】

觀察圖形可知,小林的成績波動比較大,故小林是新手.

故答案是:小林.12、【解析】

由△BOF≌△AOE,得到BE=FC=2,在直角△BEF中,從而求得EF的值.【詳解】∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,∴∠EOB=∠FOC,在△BOE和△COF中,,∴△BOE≌△COF(ASA)∴BE=FC=2,同理BF=AE=3,在Rt△BEF中,BF=3,BE=2,∴EF==.故答案為【點睛】本題考查了正方形的性質、三角形全等的性質和判定、勾股定理,在四邊形中常利用三角形全等的性質和勾股定理計算線段的長.13、【解析】

一般方法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.根據隨機事件概率大小的求法,找準兩點:①符合條件的情況數目,②全部情況的總數,二者的比值就是其發生的概率的大小.【詳解】∵不透明袋子中裝有7個球,其中有2個紅球、2個綠球和3個黑球,∴從袋子中隨機取出1個球,則它是黑球的概率是:故答案為:.【點睛】本題主要考查概率的求法與運用,解決本題的關鍵是要熟練掌握概率的定義和求概率的公式.14、﹣x-2x【解析】

直接利用分式的混合運算法則即可得出.【詳解】原式====-x-2故答案為:-x-2【點睛】此題主要考查了分式的化簡,正確掌握運算法則是解題關鍵.15、【解析】

∵在Rt△ABC中,BC=6,sinA=∴AB=10∴.∵D是AB的中點,∴AD=AB=1.∵∠C=∠EDA=90°,∠A=∠A∴△ADE∽△ACB,∴即解得:DE=.16、【解析】分析:延長AE交DF于G,再根據全等三角形的判定得出△AGD與△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根據勾股定理得出EF的長.詳解:延長AE交DF于G,如圖,∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE.在△AGD和△BAE中,∵,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=.故答案為.點睛:本題考查了正方形的性質,關鍵是根據全等三角形的判定和性質得出EG=FG=1,再利用勾股定理計算.17、②③④【解析】

①可用特殊值法證明,當為的中點時,,可見.②可連接,交于點,先根據證明,得到,根據矩形的性質可得,故,又因為,故,故.③先證明,得到,再根據,得到,代換可得.④根據,可知當取最小值時,也取最小值,根據點到直線的距離也就是垂線段最短可得,當時,取最小值,再通過計算可得.【詳解】解:①錯誤.當為的中點時,,可見;②正確.如圖,連接,交于點,,,,,四邊形為矩形,,,,,,,.③正確.,,,,,又,,,,,.④正確.且四邊形為矩形,,當時,取最小值,此時,故的最小值為.故答案為:②③④.【點睛】本題是動點問題,綜合考查了矩形、正方形的性質,全等三角形與相似三角形的性質與判定,線段的最值問題等,合理作出輔助線,熟練掌握各個相關知識點是解答關鍵.三、解答題(共7小題,滿分69分)18、(1)-21;(2)正確;(3)運算“※”滿足結合律【解析】

(1)根據新定義運算法則即可求出答案.(2)只需根據整式的運算證明法則a※b=b※a即可判斷.(3)只需根據整式的運算法則證明(a※b)※c=a※(b※c)即可判斷.【詳解】(1)(-3)※9=(-3+1)(9+1)-1=-21(2)a※b=(a+1)(b+1)-1b※a=(b+1)(a+1)-1,∴a※b=b※a,故滿足交換律,故她判斷正確;(3)由已知把原式化簡得a※b=(a+1)(b+1)-1=ab+a+b∵(a※b)※c=(ab+a+b)※c=(ab+a+b+1)(c+1)-1=abc+ac+ab+bc+a+b+c∵a※(b※c)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c∴(a※b)※c=a※(b※c)∴運算“※”滿足結合律【點睛】本題考查新定義運算,解題的關鍵是正確理解新定義運算的法則,本題屬于中等題型.19、(1)(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(,﹣1)、(,﹣1)【解析】

(1)把點A的坐標代入拋物線的解析式,就可求得拋物線的解析式,根據A,C兩點的坐標,可求得直線AC的函數解析式;(1)先過點D作DH⊥x軸于點H,運用割補法即可得到:四邊形OCDA的面積=△ADH的面積+四邊形OCDH的面積,據此列式計算化簡就可求得S關于m的函數關系;(3)由于AC確定,可分AC是平行四邊形的邊和對角線兩種情況討論,得到點E與點C的縱坐標之間的關系,然后代入拋物線的解析式,就可得到滿足條件的所有點E的坐標.【詳解】(1)∵A(﹣4,0)在二次函數y=ax1﹣x+1(a≠0)的圖象上,∴0=16a+6+1,解得a=﹣,∴拋物線的函數解析式為y=﹣x1﹣x+1;∴點C的坐標為(0,1),設直線AC的解析式為y=kx+b,則,解得,∴直線AC的函數解析式為:;(1)∵點D(m,n)是拋物線在第二象限的部分上的一動點,∴D(m,﹣m1﹣m+1),過點D作DH⊥x軸于點H,則DH=﹣m1﹣m+1,AH=m+4,HO=﹣m,∵四邊形OCDA的面積=△ADH的面積+四邊形OCDH的面積,∴S=(m+4)×(﹣m1﹣m+1)+(﹣m1﹣m+1+1)×(﹣m),化簡,得S=﹣m1﹣4m+4(﹣4<m<0);(3)①若AC為平行四邊形的一邊,則C、E到AF的距離相等,∴|yE|=|yC|=1,∴yE=±1.當yE=1時,解方程﹣x1﹣x+1=1得,x1=0,x1=﹣3,∴點E的坐標為(﹣3,1);當yE=﹣1時,解方程﹣x1﹣x+1=﹣1得,x1=,x1=,∴點E的坐標為(,﹣1)或(,﹣1);②若AC為平行四邊形的一條對角線,則CE∥AF,∴yE=yC=1,∴點E的坐標為(﹣3,1).綜上所述,滿足條件的點E的坐標為(﹣3,1)、(,﹣1)、(,﹣1).20、兩組對邊分別相等的四邊形是平行四邊形;平行四邊形的對角線互相平分;兩點確定一條直線.【解析】

根據對角線互相平分的四邊形是平行四邊形可判斷四邊形ABCP為平行四邊形,再根據平行四邊形的性質:對角線互相平分即可得到BD=CD,由此可得到小楠的作圖依據.【詳解】解:由作圖的步驟可知平行四邊形可判斷四邊形ABCP為平行四邊形,再根據平行四邊形的性質:對角線互相平分即可得到BD=CD,所以小楠的作圖依據是:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形的對角線互相平分;兩點確定一條直線.故答案為:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形的對角線互相平分;兩點確定一條直線.【點睛】本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了平行四邊形的判定和性質.21、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).【解析】

(1)將的坐標代入拋物線中,求出待定系數的值,即可得出拋物線的解析式;

(2)根據的坐標,易求得直線的解析式.由于都是定值,則的面積不變,若四邊形面積最大,則的面積最大;過點作軸交于,則可得到當面積有最大值時,四邊形的面積最大值;(3)本題應分情況討論:①過作軸的平行線,與拋物線的交點符合點的要求,此時的縱坐標相同,代入拋物線的解析式中即可求出點坐標;②將平移,令點落在軸(即點)、點落在拋物線(即點)上;可根據平行四邊形的性質,得出點縱坐標(縱坐標的絕對值相等),代入拋物線的解析式中即可求得點坐標.【詳解】解:(1)把代入,可以求得∴(2)過點作軸分別交線段和軸于點,在中,令,得設直線的解析式為可求得直線的解析式為:∵S四邊形ABCD設當時,有最大值此時四邊形ABCD面積有最大值(3)如圖所示,如圖:①過點C作CP1∥x軸交拋物線于點P1,過點P1作P1E1∥BC交x軸于點E1,此時四邊形BP1CE1為平行四邊形,

∵C(0,-3)

∴設P1(x,-3)

∴x2-x-3=-3,解得x1=0,x2=3,

∴P1(3,-3);

②平移直線BC交x軸于點E,交x軸上方的拋物線于點P,當BC=PE時,四邊形BCEP為平行四邊形,

∵C(0,-3)

∴設P(x,3),

∴x2-x-3=3,

x2-3x-8=0

解得x=或x=,

此時存在點P2(,3)和P3(,3),

綜上所述存在3個點符合題意,坐標分別是P1(3,-3),P2(,3),P3(,3).【點睛】此題考查了二次函數解析式的確定、圖形面積的求法、平行四邊形的判定和性質、二次函數的應用等知識,綜合性強,難度較大.22、(1)3;(2)∠DEF的大小不變,tan∠DEF=;(3)或.【解析】

(1)當t=3時,點E為AB的中點,∵A(8,0),C(0,6),∴OA=8,OC=6,∵點D為OB的中點,∴DE∥OA,DE=OA=4,∵四邊形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四邊形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不變;理由如下:作DM⊥OA于M,DN⊥AB于N,如圖2所示:∵四邊形OABC是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論