2023-2024學年遼寧省沈陽市重點高中聯合體高三數學試題第三次模擬考試試題_第1頁
2023-2024學年遼寧省沈陽市重點高中聯合體高三數學試題第三次模擬考試試題_第2頁
2023-2024學年遼寧省沈陽市重點高中聯合體高三數學試題第三次模擬考試試題_第3頁
2023-2024學年遼寧省沈陽市重點高中聯合體高三數學試題第三次模擬考試試題_第4頁
2023-2024學年遼寧省沈陽市重點高中聯合體高三數學試題第三次模擬考試試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年遼寧省沈陽市重點高中聯合體高三數學試題第三次模擬考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為坐標原點),則k的值為()A. B. C.或- D.和-2.根據散點圖,對兩個具有非線性關系的相關變量x,y進行回歸分析,設u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計值是()A.e B.e2 C.ln2 D.2ln23.定義在上的偶函數,對,,且,有成立,已知,,,則,,的大小關系為()A. B. C. D.4.要得到函數的導函數的圖像,只需將的圖像()A.向右平移個單位長度,再把各點的縱坐標伸長到原來的3倍B.向右平移個單位長度,再把各點的縱坐標縮短到原來的倍C.向左平移個單位長度,再把各點的縱坐標縮短到原來的倍D.向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍5.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.36.已知函數的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點旋轉;②沿軸正方向平移;③以軸為軸作軸對稱;④以軸的某一條垂線為軸作軸對稱.A.①③ B.③④ C.②③ D.②④7.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.8.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值9.記其中表示不大于x的最大整數,若方程在在有7個不同的實數根,則實數k的取值范圍()A. B. C. D.10.已知函數,,且在上是單調函數,則下列說法正確的是()A. B.C.函數在上單調遞減 D.函數的圖像關于點對稱11.定義運算,則函數的圖象是().A. B.C. D.12.用數學歸納法證明1+2+3+?+n2=n4A.k2+1C.k2+1二、填空題:本題共4小題,每小題5分,共20分。13.設為數列的前項和,若,則____14.設等比數列的前項和為,若,,則__________.15.已知橢圓的下頂點為,若直線與橢圓交于不同的兩點、,則當_____時,外心的橫坐標最大.16.若x,y均為正數,且,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點.證明:;設,點M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.18.(12分)已知函數,其中.(1)當時,求在的切線方程;(2)求證:的極大值恒大于0.19.(12分)已知函數.(1)當時,試求曲線在點處的切線;(2)試討論函數的單調區間.20.(12分)在平面直角坐標系中,曲線:(為參數,),曲線:(為參數).若曲線和相切.(1)在以為極點,軸非負半軸為極軸的極坐標系中,求曲線的普通方程;(2)若點,為曲線上兩動點,且滿足,求面積的最大值.21.(12分)已知函數,且曲線在處的切線方程為.(1)求的極值點與極值.(2)當,時,證明:.22.(10分)以平面直角坐標系的原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,已知曲線,曲線(為參數),求曲線交點的直角坐標.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

直線過定點,直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),可以發現∠QOx的大小,求得結果.【詳解】如圖,直線過定點(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對稱性可知k=±.故選C.【點睛】本題考查過定點的直線系問題,以及直線和圓的位置關系,是基礎題.2.B【解析】

將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數函數和二次函數的性質可得最大估計值.【詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當時,取到最大值2,因為在上單調遞增,則取到最大值.故選:B.【點睛】本題考查了非線性相關的二次擬合問題,考查復合型指數函數的最值,是基礎題,.3.A【解析】

根據偶函數的性質和單調性即可判斷.【詳解】解:對,,且,有在上遞增因為定義在上的偶函數所以在上遞減又因為,,所以故選:A【點睛】考查偶函數的性質以及單調性的應用,基礎題.4.D【解析】

先求得,再根據三角函數圖像變換的知識,選出正確選項.【詳解】依題意,所以由向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍得到的圖像.故選:D【點睛】本小題主要考查復合函數導數的計算,考查誘導公式,考查三角函數圖像變換,屬于基礎題.5.D【解析】

畫出可行域,將化為,通過平移即可判斷出最優解,代入到目標函數,即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標函數為直線方程的斜截式,.由圖可知當直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【點睛】本題考查了線性規劃問題.一般第一步畫出可行域,然后將目標函數轉化為的形式,在可行域內通過平移找到最優解,將最優解帶回到目標函數即可求出最值.注意畫可行域時,邊界線的虛實問題.6.D【解析】

計算得到,,故函數是周期函數,軸對稱圖形,故②④正確,根據圖像知①③錯誤,得到答案.【詳解】,,,當沿軸正方向平移個單位時,重合,故②正確;,,故,函數關于對稱,故④正確;根據圖像知:①③不正確;故選:.【點睛】本題考查了根據函數圖像判斷函數性質,意在考查學生對于三角函數知識和圖像的綜合應用.7.D【解析】

根據拋物線的性質,設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F1(0,),F2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點睛】本題考查拋物線及雙曲線的方程及簡單性質,考查轉化思想,考查計算能力,屬于中檔題.8.D【解析】

A.通過線面的垂直關系可證真假;B.根據線面平行可證真假;C.根據三棱錐的體積計算的公式可證真假;D.根據列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內.9.D【解析】

做出函數的圖象,問題轉化為函數的圖象在有7個交點,而函數在上有3個交點,則在上有4個不同的交點,數形結合即可求解.【詳解】作出函數的圖象如圖所示,由圖可知方程在上有3個不同的實數根,則在上有4個不同的實數根,當直線經過時,;當直線經過時,,可知當時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數根.故選:D.【點睛】本題考查方程根的個數求參數,利用函數零點和方程之間的關系轉化為兩個函數的交點是解題的關鍵,運用數形結合是解決函數零點問題的基本思想,屬于中檔題.10.B【解析】

根據函數,在上是單調函數,確定,然后一一驗證,A.若,則,由,得,但.B.由,,確定,再求解驗證.C.利用整體法根據正弦函數的單調性判斷.D.計算是否為0.【詳解】因為函數,在上是單調函數,所以,即,所以,若,則,又因為,即,解得,而,故A錯誤.由,不妨令,得由,得或當時,,不合題意.當時,,此時所以,故B正確.因為,函數,在上是單調遞增,故C錯誤.,故D錯誤.故選:B【點睛】本題主要考查三角函數的性質及其應用,還考查了運算求解的能力,屬于較難的題.11.A【解析】

由已知新運算的意義就是取得中的最小值,因此函數,只有選項中的圖象符合要求,故選A.12.C【解析】

首先分析題目求用數學歸納法證明1+1+3+…+n1=n4【詳解】當n=k時,等式左端=1+1+…+k1,當n=k+1時,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了項(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故選:C.【點睛】本題主要考查數學歸納法,屬于中檔題./二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

當時,由,解得,當時,,兩式相減可得,即,可得數列是等比數列再求通項公式.【詳解】當時,,即,當時,,兩式相減可得,即,即,故數列是以為首項,為公比的等比數列,所以.故答案為:【點睛】本題考查數列的前項和與通項公式的關系,還考查運算求解能力以及化歸與轉化思想,屬于基礎題.14.【解析】

由題意,設等比數列的公比為,根據已知條件,列出方程組,求得的值,利用求和公式,即可求解.【詳解】由題意,設等比數列的公比為,因為,即,解得,,所以.【點睛】本題主要考查了等比數列的通項公式,及前n項和公式的應用,其中解答中根據等比數列的通項公式,正確求解首項和公比是解答本題的關鍵,著重考查了推理與計算能力,屬于基礎題.15.【解析】

由已知可得、的坐標,求得的垂直平分線方程,聯立已知直線方程與橢圓方程,求得的垂直平分線方程,兩垂直平分線方程聯立求得外心的橫坐標,再由導數求最值.【詳解】如圖,由已知條件可知,不妨設,則外心在的垂直平分線上,即在直線,也就是在直線上,聯立,得或,的中點坐標為,則的垂直平分線方程為,把代入上式,得,令,則,由,得(舍)或.當時,,當時,.當時,函數取極大值,亦為最大值.故答案為:.【點睛】本題考查直線與橢圓位置關系的應用,訓練了利用導數求最值,是中等題.16.4【解析】

由基本不等式可得,則,即可解得.【詳解】方法一:,當且僅當時取等.方法二:因為,所以,所以,當且僅當時取等.故答案為:.【點睛】本題考查基本不等式在求最小值中的應用,考查學生對基本不等式的靈活使用,難度較易.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】

(1)由平面平面的性質定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標原點建立空間直角坐標系,由空間向量法和異面直線與所成角的余弦值為,得點M的坐標,從而求出二面角的余弦值.【詳解】(1)平面平面,平面平面=,,所以.由面面垂直的性質定理得平面,,在中,,,由正弦定理可得:,,即,平面,.(2)以為坐標原點建立如圖所示的空間直角坐標系,則,,,設,則,,得,,而,設平面的法向量為,由可得:,令,則,取平面的法向量,則,故二面角的余弦值為.【點睛】本題考查了線線垂直的證明,考查二面角的余弦值的求法,解題時要注意空間思維能力的培養和向量法的合理運用,屬于中檔題.18.(1)(2)證明見解析【解析】

(1)求導,代入,求出在處的導數值及函數值,由此即可求得切線方程;(2)分類討論得出極大值即可判斷.【詳解】(1),當時,,,則在的切線方程為;(2)證明:令,解得或,①當時,恒成立,此時函數在上單調遞減,∴函數無極值;②當時,令,解得,令,解得或,∴函數在上單調遞增,在,上單調遞減,∴;③當時,令,解得,令,解得或,∴函數在上單調遞增,在,上單調遞減,∴,綜上,函數的極大值恒大于0.【點睛】本小題主要考查利用導數求切線方程,考查利用導數研究函數的極值,考查分類討論的數學思想方法,屬于中檔題.19.(1);(2)見解析【解析】

(1)對函數進行求導,可以求出曲線在點處的切線,利用直線的斜截式方程可以求出曲線的切線方程;(2)對函數進行求導,對實數進行分類討論,可以求出函數的單調區間.【詳解】(1)當時,函數定義域為,,所以切線方程為;(2)當時,函數定義域為,在上單調遞增當時,恒成立,函數定義域為,又在單調遞增,單調遞減,單調遞增當時,函數定義域為,在單調遞增,單調遞減,單調遞增當時,設的兩個根為且,由韋達定理易知兩根均為正根,且,所以函數的定義域為,又對稱軸,且,在單調遞增,單調遞減,單調遞增【點睛】本題考查了曲線切線方程的求法,考查了利用函數的導數討論函數的單調性問題,考查了分類思想.20.(1);(2)【解析】

(1)消去參數,將圓的參數方程,轉化為普通方程,再由圓心到直線的距離等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論