福建省福州市羅源縣第一中學2025屆高二上數學期末預測試題含解析_第1頁
福建省福州市羅源縣第一中學2025屆高二上數學期末預測試題含解析_第2頁
福建省福州市羅源縣第一中學2025屆高二上數學期末預測試題含解析_第3頁
福建省福州市羅源縣第一中學2025屆高二上數學期末預測試題含解析_第4頁
福建省福州市羅源縣第一中學2025屆高二上數學期末預測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省福州市羅源縣第一中學2025屆高二上數學期末預測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等比數列的各項均為正數,且,則()A.5 B.10C.4 D.2.已知空間、、、四點共面,且其中任意三點均不共線,設為空間中任意一點,若,則()A.2 B.C.1 D.3.已知橢圓的右焦點和右頂點分別為F,A,離心率為,且,則n的值為()A.4 B.3C.2 D.4.拋物線的焦點為F,準線為l,點P是準線l上的動點,若點A在拋物線C上,且,則(O為坐標原點)的最小值為()A. B.C. D.5.魏晉時期數學家劉徽首創割圓術,他在《九章算術》方田章圓田術中指出:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”這是注述中所用的割圓術是一種無限與有限的轉化過程,比如在正數中的“”代表無限次重復,設,則可以利用方程求得,類似地可得到正數()A.2 B.3C. D.6.“,”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知函數,,當時,不等式恒成立,則實數的取值范圍為()A. B.C. D.8.若將一個橢圓繞其中心旋轉90°,所得橢圓短軸兩頂點恰好是旋轉前橢圓的兩焦點,這樣的橢圓稱為“對偶橢圓”,下列橢圓中是“對偶橢圓”的是()A. B.C. D.9.二項式的展開式中,各項二項式系數的和是()A.2 B.8C.16 D.3210.在空間直角坐標系中,點關于平面的對稱點的坐標是()A. B.C. D.11.已知圓,則圓C關于直線對稱的圓的方程為()A. B.C. D.12.如圖,兩個半徑為R的相交大圓,分別內含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切.已知時,在兩相交大圓的區域內隨機取一點,則該點取自兩大圓公共部分的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數在處的切線方程為_________14.已知為拋物線上任意一點,為拋物線的焦點,為平面內一定點,則的最小值為__________.15.過雙曲線的右焦點作一條與其漸近線平行的直線,交于點.若點的橫坐標為,則的離心率為-.16.若,則數列的前21項和___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C的圓心在直線上,且圓C經過,兩點.(1)求圓C的標準方程.(2)設直線與圓C交于A,B(異于坐標原點O)兩點,若以AB為直徑的圓過原點,試問直線l是否過定點?若是,求出定點坐標;若否,請說明理由.18.(12分)如圖,在三棱錐中,,,為的中點(1)證明:平面;(2)若點在棱上,且二面角為,求與平面所成角正弦值.19.(12分)如圖,中,且,將沿中位線EF折起,使得,連結AB,AC,M為AC的中點.(1)證明:平面ABC;(2)求二面角的余弦值.20.(12分)如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD//BC,AB=BC=CD=1,AD=2,直線BC與平面PCD所成角的正弦值為.(1)求證:平面PCD⊥平面PAC;(2)求平面PAB與平面PCD所成銳二面角的余弦值.21.(12分)雙曲線(,)的離心率,且過點.(1)求a,b的值;(2)求與雙曲線C有相同漸近線,且過點的雙曲線的標準方程.22.(10分)一個長方體的平面展開圖及該長方體的直觀圖的示意圖如圖所示(1)請將字母F,G,H標記在長方體相應的頂點處(不需說明理由):(2)若且有下面兩個條件:①;②,請選擇其中一個條件,使得DF⊥平面,并證明你的結論

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用等比數列的性質及對數的運算性質求解.【詳解】由題有,則=5.故選:A2、B【解析】根據空間四點共面的充要條件代入即可解決.【詳解】,即整理得由、、、四點共面,且其中任意三點均不共線,可得,解之得故選:B3、B【解析】根據橢圓方程及其性質有,求解即可.【詳解】由題設,,整理得,可得.故選:B4、D【解析】依題意得點坐標,作點關于的對稱點,則,求即為最小值【詳解】如圖所示:作點關于的對稱點,連接,設點,不妨設,由題意知,直線l方程為,則,得所以,得,所以由,當三點共線時取等號,又所以最小值為故選:D5、A【解析】設,則,解方程可得結果.【詳解】設,則且,所以,所以,所以,所以或(舍).所以.故選:A【點睛】關鍵點點睛:設是解題關鍵.6、A【解析】由正切函數性質,應用定義法判斷條件間充分、必要關系.【詳解】當,,則,當時,,.∴“,”是“”的充分不必要條件.故選:A7、C【解析】由題意得出,構造函數,可知函數在區間上單調遞增,可得出對任意的恒成立,利用參變量分離法可得出,利用導數求得函數在區間上的最大值,由此可求得實數的取值范圍.【詳解】函數的定義域為,當時,恒成立,即,構造函數,則,所以,函數在區間上為增函數,則對任意的恒成立,,令,其中,則.,所以函數在上單調遞減;又,所以.因此,實數的取值范圍是.故選:C.8、A【解析】由題意可得,所給的橢圓中的,的值求出的值,進而判斷所給命題的真假【詳解】解:因為橢圓短的軸兩頂點恰好是旋轉前橢圓的兩焦點,即,即,中,,,所以,故,所以正確;中,,,所以,所以不正確;中,,,所以,所以不正確;中,,,所以,所以不正確;故選:9、D【解析】根據給定條件利用二項式系數的性質直接計算作答.【詳解】二項式的展開式的各項二項式系數的和是.故選:D10、C【解析】根據空間里面點關于面對稱的性質即可求解.【詳解】在空間直角坐標系中,點關于平面的對稱點的坐標是.故選:C.11、B【解析】求得圓的圓心關于直線的對稱點,由此求得對稱圓的方程.【詳解】設圓的圓心關于直線的對稱點為,則,所以對稱圓的方程為.故選:B12、C【解析】設D為線段AB的中點,求得,在中,可得.進而求得兩大圓公共部分的面積為:,利用幾何概型計算即可得出結果.【詳解】如圖,設D為線段AB的中點,,在中,.兩大圓公共部分的面積為:,則該點取自兩大圓公共部分的概率為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求得函數的導數,得到且,結合直線的點斜式方程,即可求解.【詳解】由題意,函數,可得,則且,所以函數在處的切線方程為,即,即切線方程為.故答案為:.14、3【解析】利用拋物線的定義,再結合圖形即求.【詳解】由題可得拋物線的準線為,設點在準線上的射影為,則根據拋物線的定義可知,∴要求取得最小值,即求取得最小,當三點共線時最小,為.故答案為:3.15、【解析】雙曲線的右焦點為.不妨設所作直線與雙曲線的漸近線平行,其方程為,代入求得點的橫坐標為,由,得,解之得,(舍去,因為離心率),故雙曲線的離心率為.考點:1.雙曲線的幾何性質;2.直線方程.16、【解析】利用分組求和法求出答案即可.【詳解】故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)過定點,定點為【解析】(1)設出圓C的標準方程,由題意列出方程從而可得答案.(2)設,,將直線的方程與圓C的方程聯立,得出韋達定理,由條件可得,從而得出答案.【小問1詳解】設圓C的標準方程為由題意可得解得,,.故圓C的標準方程為.【小問2詳解】設,.聯立整理的,則,,故.因為以AB為直徑的圓過原點,所以,即則,化簡得.當時,直線,直線l過原點,此時不滿足以AB為直徑的圓過原點.所以,則,則直線過定點.18、(1)證明見解析;(2).【解析】(1)根據等腰三角形性質得PO垂直AC,再通過計算,根據勾股定理得PO垂直OB,最后根據線面垂直判定定理得結論;(2)根據條件建立空間直角坐標系,設立各點坐標,根據方程組解出平面PAM一個法向量,利用向量數量積求出兩個法向量夾角,根據二面角與法向量夾角相等或互補關系列方程,解得M坐標,再利用向量數量積求得向量PC與平面PAM法向量夾角,最后根據線面角與向量夾角互余得結果【詳解】(1)因為,為的中點,所以,且連結因為,所以為等腰直角三角形,且由知由知平面(2)如圖,以為坐標原點,的方向為軸正方向,建立空間直角坐標系由已知得取平面的法向量設,則設平面的法向量為由得,可取所以.由已知得所以.解得(舍去),所以又,所以所以與平面所成角的正弦值為【點睛】利用法向量求解空間線面角的關鍵在于“四破”:第一,破“建系關”,構建恰當的空間直角坐標系;第二,破“求坐標關”,準確求解相關點的坐標;第三,破“求法向量關”,求出平面的法向量;第四,破“應用公式關”19、(1)證明見解析(2)【解析】(1)由勾股定理以及等腰三角形的性質得出,,再由線面垂直的判定證明即可;(2)以點為坐標原點,建立空間直角坐標系,由向量法得出面面角.【小問1詳解】設,則,,平面平面,連接,,,,,即又,平面ABC【小問2詳解】,以點為坐標原點,建立如下圖所示的空間直角坐標系設平面的法向量為,平面的法向量為,令,則同理可得,又二面角為鈍角,故二面角的余弦值為.20、(1)證明見解析(2)【解析】(1)取的中點,連接,證明,由線面垂直的判定定理可證明平面,再利用面面垂直的判定定理可證得結論,(2)過點作于,以為原點,建立空間直角坐標系,如圖所示,設,先根據直線BC與平面PCD所成角的正弦值為,求出,然后再求出平面PAB的法向量,利用向量的夾角公式可求得結果【小問1詳解】證明:取的中點,連接,因為AD//BC,AB=BC=CD=1,AD=2,所以,∥,所以四邊形為平行四邊形,所以,所以,因為平面,平面,所以,因為,所以平面,因為平面,所以平面平面,【小問2詳解】過點作于,以為原點,建立空間直角坐標系,如圖所示,在等腰梯形中,AD//BC,AB=BC=CD=1,AD=2,則,所以設因為平面,所以所以,設平面的法向量為,則,令,則,因為直線BC與平面PCD所成角的正弦值為,所以,解得,所以,,設平面的法向量為,因為,所以,令,則,所以,所以平面PAB與平面PCD所成銳二面角的余弦值為21、(1),(2)【解析】(1)根據已知條件建立關于a、b、c的方程組可解;(2)巧設與已知雙曲線同漸近線的雙曲線方程為可得.【小問1詳解】因為離心率,所以.又因為點在雙曲線C上,所以.聯立上述方程,解得,,即,.【小問2詳解】設所求雙曲線的方程為,由雙曲線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論