2025屆浙江省杭州市北斗聯(lián)盟數(shù)學高三第一學期期末質(zhì)量檢測試題含解析_第1頁
2025屆浙江省杭州市北斗聯(lián)盟數(shù)學高三第一學期期末質(zhì)量檢測試題含解析_第2頁
2025屆浙江省杭州市北斗聯(lián)盟數(shù)學高三第一學期期末質(zhì)量檢測試題含解析_第3頁
2025屆浙江省杭州市北斗聯(lián)盟數(shù)學高三第一學期期末質(zhì)量檢測試題含解析_第4頁
2025屆浙江省杭州市北斗聯(lián)盟數(shù)學高三第一學期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆浙江省杭州市北斗聯(lián)盟數(shù)學高三第一學期期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.42.據(jù)國家統(tǒng)計局發(fā)布的數(shù)據(jù),2019年11月全國CPI(居民消費價格指數(shù)),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是2019年11月CPI一籃子商品權重,根據(jù)該圖,下列結(jié)論錯誤的是()A.CPI一籃子商品中所占權重最大的是居住B.CPI一籃子商品中吃穿住所占權重超過50%C.豬肉在CPI一籃子商品中所占權重約為2.5%D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為0.18%3.已知集合,,則=()A. B. C. D.4.已知函數(shù),則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關于直線對稱 D.的圖象關于點對稱5.已知隨機變量服從正態(tài)分布,且,則()A. B. C. D.6.自2019年12月以來,在湖北省武漢市發(fā)現(xiàn)多起病毒性肺炎病例,研究表明,該新型冠狀病毒具有很強的傳染性各級政府反應迅速,采取了有效的防控阻擊措施,把疫情控制在最低范圍之內(nèi).某社區(qū)按上級要求做好在鄂返鄉(xiāng)人員體格檢查登記,有3個不同的住戶屬在鄂返鄉(xiāng)住戶,負責該小區(qū)體格檢查的社區(qū)診所共有4名醫(yī)生,現(xiàn)要求這4名醫(yī)生都要分配出去,且每個住戶家里都要有醫(yī)生去檢查登記,則不同的分配方案共有()A.12種 B.24種 C.36種 D.72種7.設等差數(shù)列的前項和為,若,,則()A.21 B.22 C.11 D.128.設為自然對數(shù)的底數(shù),函數(shù),若,則()A. B. C. D.9.計算等于()A. B. C. D.10.拋物線的準線與軸的交點為點,過點作直線與拋物線交于、兩點,使得是的中點,則直線的斜率為()A. B. C.1 D.11.已知,若,則等于()A.3 B.4 C.5 D.612.如圖1,《九章算術》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現(xiàn)被風折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角所對的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.14.我國古代數(shù)學著作《九章算術》中記載“今有人共買物,人出八,盈三;人出七,不足四.問人數(shù)、物價各幾何?”設人數(shù)、物價分別為、,滿足,則_____,_____.15.如圖,某市一學校位于該市火車站北偏東方向,且,已知是經(jīng)過火車站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學校道路,其中,,以學校為圓心,半徑為的四分之一圓弧分別與相切于點.當?shù)卣顿Y開發(fā)區(qū)域發(fā)展經(jīng)濟,其中分別在公路上,且與圓弧相切,設,的面積為.(1)求關于的函數(shù)解析式;(2)當為何值時,面積為最小,政府投資最低?16.在中,角,,的對邊長分別為,,,滿足,,則的面積為__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,將曲線(為參數(shù))通過伸縮變換,得到曲線,設直線(為參數(shù))與曲線相交于不同兩點,.(1)若,求線段的中點的坐標;(2)設點,若,求直線的斜率.18.(12分)已知函數(shù).(1)求的極值;(2)若,且,證明:.19.(12分)已知函數(shù).(1)討論的單調(diào)性并指出相應單調(diào)區(qū)間;(2)若,設是函數(shù)的兩個極值點,若,且恒成立,求實數(shù)k的取值范圍.20.(12分)如圖,橢圓的左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓在軸右側(cè)的部分交于、兩點.(1)求橢圓的標準方程;(2)求四邊形面積的取值范圍.21.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點.(1)證明:;(2)求直線與平面所成角的正弦值.22.(10分)在直角坐標系xOy中,直線的參數(shù)方程為(t為參數(shù)).以原點O為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為.(1)寫出圓C的直角坐標方程;(2)設直線l與圓C交于A,B兩點,,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線的焦點坐標,由雙曲線的幾何性質(zhì)可得,解可得,由離心率公式計算可得答案.【詳解】根據(jù)題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.【點睛】本題主要考查雙曲線、拋物線的標準方程,關鍵是求出拋物線焦點的坐標,意在考查學生對這些知識的理解掌握水平.2、D【解析】

A.從第一個圖觀察居住占23%,與其他比較即可.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D.易知豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%.【詳解】A.CPI一籃子商品中居住占23%,所占權重最大的,故正確.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權重超過50%,故正確.C.食品占中19.9%,分解后后可知豬肉是占在CPI一籃子商品中所占權重約為2.5%,故正確.D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點睛】本題主要考查統(tǒng)計圖的識別與應用,還考查了理解辨析的能力,屬于基礎題.3、C【解析】

計算,,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,意在考查學生的計算能力.4、D【解析】

先將函數(shù)化為,再由三角函數(shù)的性質(zhì),逐項判斷,即可得出結(jié)果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數(shù)對稱軸可得:解得:,當,,故C正確;對于D,正弦函數(shù)對稱中心的橫坐標為:解得:若圖象關于點對稱,則解得:,故D錯誤;故選:D.【點睛】本題考查三角恒等變換,三角函數(shù)的性質(zhì),熟記三角函數(shù)基本公式和基本性質(zhì),考查了分析能力和計算能力,屬于基礎題.5、C【解析】

根據(jù)在關于對稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點睛】本題考查正態(tài)分布的應用.掌握正態(tài)曲線的性質(zhì)是解題基礎.隨機變量服從正態(tài)分布,則.6、C【解析】

先將4名醫(yī)生分成3組,其中1組有2人,共有種選法,然后將這3組醫(yī)生分配到3個不同的住戶中去,有種方法,由分步原理可知共有種.【詳解】不同分配方法總數(shù)為種.故選:C【點睛】此題考查的是排列組合知識,解此類題時一般先組合再排列,屬于基礎題.7、A【解析】

由題意知成等差數(shù)列,結(jié)合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項.對于等差數(shù)列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計算量大大減少.8、D【解析】

利用與的關系,求得的值.【詳解】依題意,所以故選:D【點睛】本小題主要考查函數(shù)值的計算,屬于基礎題.9、A【解析】

利用誘導公式、特殊角的三角函數(shù)值,結(jié)合對數(shù)運算,求得所求表達式的值.【詳解】原式.故選:A【點睛】本小題主要考查誘導公式,考查對數(shù)運算,屬于基礎題.10、B【解析】

設點、,設直線的方程為,由題意得出,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,結(jié)合可求得的值,由此可得出直線的斜率.【詳解】由題意可知點,設點、,設直線的方程為,由于點是的中點,則,將直線的方程與拋物線的方程聯(lián)立得,整理得,由韋達定理得,得,,解得,因此,直線的斜率為.故選:B.【點睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問題,涉及韋達定理設而不求法的應用,考查運算求解能力,屬于中等題.11、C【解析】

先求出,再由,利用向量數(shù)量積等于0,從而求得.【詳解】由題可知,因為,所以有,得,故選:C.【點睛】該題考查的是有關向量的問題,涉及到的知識點有向量的減法坐標運算公式,向量垂直的坐標表示,屬于基礎題目.12、B【解析】如圖,已知,,

∴,解得

,∴,解得

.∴折斷后的竹干高為4.55尺故選B.二、填空題:本題共4小題,每小題5分,共20分。13、等腰三角形【解析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,14、【解析】

利用已知條件,通過求解方程組即可得到結(jié)果.【詳解】設人數(shù)、物價分別為、,滿足,解得,.故答案為:;.【點睛】本題考查函數(shù)與方程的應用,方程組的求解,考查計算能力,屬于基礎題.15、(1);(2).【解析】

(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設,又,故,,進而表示直線的方程,由直線與圓相切構(gòu)建關系化簡整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數(shù)值域可求得t的取值范圍,進而對原面積的函數(shù)用含t的表達式換元,再令進行換元,并構(gòu)建新的函數(shù),由二次函數(shù)性質(zhì)即可求得最小值.【詳解】解:(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設,又,故,.所以直線的方程為,即.因為直線與圓相切,所以.因為點在直線的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調(diào)遞減.所以,當,即時,取得最大值,取最小值.答:當時,面積為最小,政府投資最低.【點睛】本題考查三角函數(shù)的實際應用,應優(yōu)先結(jié)合實際建立合適的數(shù)學模型,再按模型求最值,屬于難題.16、.【解析】

由二次方程有解的條件,結(jié)合輔助角公式和正弦函數(shù)的值域可求,進而可求,然后結(jié)合余弦定理可求,代入,計算可得所求.【詳解】解:把看成關于的二次方程,則,即,即為,化為,而,則,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(負的舍去),.故答案為.【點睛】本題主要考查一元二次方程的根的存在條件及輔助角公式及余弦定理和三角形的面積公式的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)由l參數(shù)方程與橢圓方程聯(lián)立可得A、B兩點參數(shù)和,再利用M點的參數(shù)為A、B兩點參數(shù)和的一半即可求M的坐標;(2)利用直線參數(shù)方程的幾何意義得到,再利用計算即可,但要注意判別式還要大于0.【詳解】(1)由已知,曲線的參數(shù)方程為(為參數(shù)),其普通方程為,當時,將(為參數(shù))代入得,設直線l上A、B兩點所對應的參數(shù)為,中點M所對應的參數(shù)為,則,所以的坐標為;(2)將代入得,則,因為即,所以,故,由得,所以.【點睛】本題考查了伸縮變換、參數(shù)方程與普通方程的互化、直線參數(shù)方程的幾何意義等知識,考查學生的計算能力,是一道中檔題.18、(1)極大值為;極小值為;(2)見解析【解析】

(1)對函數(shù)求導,進而可求出單調(diào)性,從而可求出函數(shù)的極值;(2)構(gòu)造函數(shù),求導并判斷單調(diào)性可得,從而在上恒成立,再結(jié)合,,可得到,即可證明結(jié)論成立.【詳解】(1)函數(shù)的定義域為,,所以當時,;當時,,則的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為.故的極大值為;的極小值為.(2)證明:由(1)知,設函數(shù),則,,則在上恒成立,即在上單調(diào)遞增,故,又,則,即在上恒成立.因為,所以,又,則,因為,且在上單調(diào)遞減,所以,故.【點睛】本題考查函數(shù)的單調(diào)性與極值,考查了利用導數(shù)證明不等式,構(gòu)造函數(shù)是解決本題的關鍵,屬于難題.19、(1)答案見解析(2)【解析】

(1)先對函數(shù)進行求導得,對分成和兩種情況討論,從而得到相應的單調(diào)區(qū)間;(2)對函數(shù)求導得,從而有,,,三個方程中利用得到.將不等式的左邊轉(zhuǎn)化成關于的函數(shù),再構(gòu)造新函數(shù)利用導數(shù)研究函數(shù)的最小值,從而得到的取值范圍.【詳解】解:(1)由,,則,當時,則,故在上單調(diào)遞減;當時,令,所以在上單調(diào)遞減,在上單調(diào)遞增.綜上所述:當時,在上單調(diào)遞減;當時,在上單調(diào)遞減,在上單調(diào)遞增.(2)∵,,由得,∴,,∴∵∴解得.∴.設,則,∴在上單調(diào)遞減;當時,.∴,即所求的取值范圍為.【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性、最值,考查分類討論思想和數(shù)形結(jié)合思想,求解雙元問題的常用思路是:通過換元或消元,將雙元問題轉(zhuǎn)化為單元問題,然后利用導數(shù)研究單變量函數(shù)的性質(zhì).20、(1);(2).【解析】

(1)根據(jù)坐標和為等邊三角形可得,進而得到橢圓方程;(2)①當直線斜率不存在時,易求坐標,從而得到所求面積;②當直線的斜率存在時,設方程為,與橢圓方程聯(lián)立得到韋達定理的形式,并確定的取值范圍;利用,代入韋達定理的結(jié)論可求得關于的表達式,采用換元法將問題轉(zhuǎn)化為,的值域的求解問題,結(jié)合函數(shù)單調(diào)性可求得值域;結(jié)合兩種情況的結(jié)論可得最終結(jié)果.【詳解】(1),,為等邊三角形,,橢圓的標準方程為.(2)設四邊形的面積為.①當直線的斜率不存在時,可得,,.②當直線的斜率存在時,設直線的方程為,設,,聯(lián)立得:,,,.,,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論