




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆湖北省棗陽市第七中學(xué)高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知兩直線方程分別為l1:x+y=1,l2:ax+2y=0,若l1⊥l2,則a=()A2 B.-2C. D.2.設(shè)是等差數(shù)列的前項(xiàng)和,已知,,則等于()A. B.C. D.3.如圖,平行六面體中,與的交點(diǎn)為,設(shè),則選項(xiàng)中與向量相等的是()A. B.C. D.4.下列命題中,結(jié)論為真命題的組合是()①“”是“直線與直線相互垂直”的充分而不必要條件②若命題“”為假命題,則命題一定是假命題③是的必要不充分條件④雙曲線被點(diǎn)平分的弦所在的直線方程為⑤已知過點(diǎn)的直線與圓的交點(diǎn)個(gè)數(shù)有2個(gè).A.①③④ B.②③④C.①③⑤ D.①②⑤5.若直線的傾斜角為120°,則直線的斜率為()A. B.C. D.6.已知圓,過點(diǎn)P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,若O為坐標(biāo)原點(diǎn),則最大值為()A.3 B.4C.5 D.67.某高中從3名男教師和2名女教師中選出3名教師,派到3個(gè)不同的鄉(xiāng)村支教,要求這3名教師中男女都有,則不同的選派方案共有()種A.9 B.36C.54 D.1088.函數(shù)的圖象的大致形狀是()A. B.C. D.9.若,則()A.1 B.2C.4 D.810.雙曲線的左焦點(diǎn)到其漸近線的距離是()A. B.C. D.11.一個(gè)袋中裝有大小和質(zhì)地相同的5個(gè)球,其中有2個(gè)紅色球,3個(gè)綠色球,從袋中不放回地依次隨機(jī)摸出2個(gè)球,下列結(jié)論正確的是()A.第一次摸到綠球的概率是 B.第二次摸到綠球的概率是C.兩次都摸到綠球的概率是 D.兩次都摸到紅球的概率是12.已知等比數(shù)列的前n項(xiàng)和為,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等軸(實(shí)軸長與虛軸長相等)雙曲線的離心率_______14.已知等差數(shù)列滿足,公差,則當(dāng)?shù)那皀項(xiàng)和最大時(shí),___________15.若直線:x-2y+1=0與直線:2x+my-1=0相互垂直,則實(shí)數(shù)m的值為________.16.若滿足約束條件,則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐P-ABCD中,PA平面ABCD,,∠BAD=120o,AB=AD=2,點(diǎn)M在線段PD上,且DM=2MP,平面(1)求證:平面MAC平面PAD;(2)若PA=6,求平面PAB和平面MAC所成銳二面角的余弦值18.(12分)設(shè)p:;q:關(guān)于x的方程無實(shí)根.(1)若q為真命題,求實(shí)數(shù)k的取值范圍;(2)若是假命題,且是真命題,求實(shí)數(shù)k的取值范圍.19.(12分)城南公園種植了4棵棕櫚樹,各棵棕櫚樹成活與否是相互獨(dú)立的,成活率為p,設(shè)為成活棕櫚樹的株數(shù),數(shù)學(xué)期望.(1)求p的值并寫出的分布列;(2)若有2棵或2棵以上的棕櫚樹未成活,則需要補(bǔ)種,求需要補(bǔ)種棕櫚樹的概率.20.(12分)在二項(xiàng)式展開式中,第3項(xiàng)和第4項(xiàng)的二項(xiàng)式系數(shù)比為.(1)求n的值及展開式中的常數(shù)項(xiàng);(2)求展開式中系數(shù)最大的項(xiàng)是第幾項(xiàng).21.(12分)在中,角的對(duì)邊分別為,已知,,且.(1)求角的大??;(2)若,面積為,試判斷的形狀,并說明理由.22.(10分)如圖,在四棱錐S?ABCD中,底面ABCD為矩形,,AB=2,,平面,,,E是SA的中點(diǎn)(1)求直線EF與平面SCD所成角的正弦值;(2)在直線SC上是否存在點(diǎn)M,使得平面MEF平面SCD?若存在,求出點(diǎn)M的位置;若不存在,請(qǐng)說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】直接利用直線垂直公式計(jì)算得到答案.【詳解】因?yàn)閘1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故選:【點(diǎn)睛】本題考查了根據(jù)直線垂直計(jì)算參數(shù),屬于簡單題.2、C【解析】依題意有,解得,所以.考點(diǎn):等差數(shù)列的基本概念.【易錯(cuò)點(diǎn)晴】本題主要考查等差數(shù)列的基本概念.在解有關(guān)等差數(shù)列的問題時(shí)可以考慮化歸為和等基本量,通過建立方程(組)獲得解.即等差數(shù)列的通項(xiàng)公式及前項(xiàng)和公式,共涉及五個(gè)量,知其中三個(gè)就能求另外兩個(gè),即知三求二,多利用方程組的思想,體現(xiàn)了用方程的思想解決問題,注意要弄準(zhǔn)它們的值.運(yùn)用方程的思想解等差數(shù)列是常見題型,解決此類問題需要抓住基本量、,掌握好設(shè)未知數(shù)、列出方程、解方程三個(gè)環(huán)節(jié),常通過“設(shè)而不求,整體代入”來簡化運(yùn)算3、B【解析】利用空間向量加減法、數(shù)乘的幾何意義,結(jié)合幾何體有,進(jìn)而可知與向量相等的表達(dá)式.【詳解】連接,如下圖示:,.故選:B4、C【解析】求出兩直線垂直時(shí)m值判斷①;由復(fù)合命題真值表可判斷②;化簡不等式結(jié)合充分條件、必要條件定義判斷③;聯(lián)立直線與雙曲線的方程組成的方程組驗(yàn)證判斷④;判定點(diǎn)與圓的位置關(guān)系判斷⑤作答.【詳解】若直線與直線相互垂直,則,解得或,則“”是“直線與直線相互垂直”的充分而不必要條件,①正確;命題“”為假命題,則與至少一個(gè)是假命題,不能推出一定是假命題,②不正確;,,則是的必要不充分條件,③正確;由消去y并整理得:,,即直線與雙曲線沒有公共點(diǎn),④不正確;點(diǎn)在圓上,則直線與圓至少有一個(gè)公共點(diǎn),而過點(diǎn)與圓相切的直線為,直線不包含,因此,直線與圓相交,有兩個(gè)交點(diǎn),⑤正確,所以所有真命題的序號(hào)是①③⑤.故選:C5、B【解析】求得傾斜角的正切值即得【詳解】k=tan120°=.故選:B6、C【解析】由題意,點(diǎn)P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,進(jìn)而可得,所以點(diǎn)P的軌跡為以C為圓心,半徑為3的圓,從而即可求解.【詳解】解:由題意,圓,所以圓C是以為圓心,半徑為5的圓,因?yàn)檫^點(diǎn)P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,所以點(diǎn)P在圓C內(nèi),且最長弦的長度為直徑長10,則最短弦的長度為8,所以由弦長公式有,所以點(diǎn)P的軌跡為以C為圓心,半徑為3的圓,所以,故選:C.7、C【解析】根據(jù)給定條件利用排列并結(jié)合排除法列式計(jì)算作答.【詳解】從含有3名男教師和2名女教師的5名教師中任選3名教師,派到3個(gè)不同的鄉(xiāng)村支教,不同的選派方案有種,選出3名教師全是男教師的不同的選派方案有種,所以3名教師中男女都有的不同的選派方案共有種故選:C8、B【解析】對(duì)A,根據(jù)當(dāng)時(shí),的值即可判斷;對(duì)B,根據(jù)函數(shù)在上的單調(diào)性即可判斷;對(duì)C,根據(jù)函數(shù)的奇偶性即可判斷;對(duì)D,根據(jù)函數(shù)在上的單調(diào)性即可判斷.【詳解】解:對(duì)A,當(dāng)時(shí),,故A錯(cuò)誤;對(duì)B,的定義域?yàn)?,且,故為奇函?shù);,當(dāng)時(shí),當(dāng)時(shí),,即,又,,故存在,故在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增,故B正確;對(duì)C,為奇函數(shù),故C錯(cuò)誤;對(duì)D,函數(shù)在上不單調(diào),故D錯(cuò)誤.故選:B.9、D【解析】由題意結(jié)合導(dǎo)數(shù)的運(yùn)算可得,再由導(dǎo)數(shù)的概念即可得解.【詳解】由題意,所以,所以.故選:D.10、A【解析】求出雙曲線焦點(diǎn)坐標(biāo)與漸近線方程,利用點(diǎn)到直線的距離公式可求得結(jié)果.【詳解】在雙曲線中,,,,所以,該雙曲線的左焦點(diǎn)坐標(biāo)為,漸近線方程為,即,因,該雙曲線的左焦點(diǎn)到漸近線的距離為.故選:A11、C【解析】對(duì)選項(xiàng)A,直接求出第一次摸球且摸到綠球的概率;對(duì)選項(xiàng)B,第二次摸到綠球分兩種情況,第一次摸到綠球且第二也摸到綠球和第一次摸到紅球且第二次摸到綠球;對(duì)選項(xiàng)C,直接求出第一次摸到綠球且第二也摸到綠球的概率;對(duì)選項(xiàng)D,直接求出第一次摸到紅球且第二也摸到紅球的概率【詳解】對(duì)選項(xiàng)A,第一次摸到綠球的概率為:,故錯(cuò)誤;對(duì)選項(xiàng)B,第二次摸到綠球的概率為:,故錯(cuò)誤;對(duì)選項(xiàng)C,兩次都摸到綠球的概率為:,故正確;對(duì)選項(xiàng)D,兩次都摸到紅球的概率為:,故錯(cuò)誤故選:C12、A【解析】由,可得等比數(shù)列公比q=2,利用等比數(shù)列求和公式和通項(xiàng)公式即可求.【詳解】設(shè)等比數(shù)列的公比為q,則,.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可知,,由,化簡可求離心率.【詳解】由題意可知,,兩邊同時(shí)平方,得,即,,所以離心率,故答案為:.14、3【解析】根據(jù)公式求出前n項(xiàng)和,再利用二次函數(shù)的性質(zhì).【詳解】因?yàn)榈炔顢?shù)列,,所以,當(dāng)時(shí),取到最大值.故答案為:3.15、1【解析】由兩條直線垂直可知,進(jìn)而解得答案即可.【詳解】因?yàn)閮蓷l直線垂直,所以.故答案為:1.16、5【解析】作出可行域,作直線,平移該直線可得最優(yōu)解【詳解】作出可行域,如圖內(nèi)部(含邊界),作直線,直線中是直線的縱截距,代入得,即平移直線,當(dāng)直線過點(diǎn)時(shí)取得最小值5故答案為:5三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)連接BD交AC于點(diǎn)E,連接ME,由所給條件推理出CA⊥AD,進(jìn)而得CA⊥平面PAD,證得結(jié)論(2)首先以A為原點(diǎn),射線AC,AD,AP分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,再利用向量法求解二面角即可【小問1詳解】(1)連接BD交AC于點(diǎn)E,連接ME,如圖所示:∵平面MAC,PB平面PBD,平面PBD平面MAC=ME,∴,,則BC=1,而AB=2,,,∴AC2+BC2=4=AB2,∠ACB=90o,∠CAD=90o,即CA⊥AD,又PA⊥平面ABCD,CA平面ABCD,∴PA⊥CA,又PAAD=A,∴CA⊥平面PAD,而CA平面MAC,∴平面MAC⊥平面PAD【小問2詳解】(2)如圖所示:以A為原點(diǎn),射線AC,AD,AP分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,則,∴,設(shè)平面PAB和平面MAC的一個(gè)法向量分別為,平面PAB和平面MAC所成銳二面角為,∴,,∴.18、(1);(2).【解析】(1)根據(jù)命題的真假,結(jié)合一元二次方程無實(shí)根,列出的不等式,即可求得結(jié)果;(2)求得命題為真對(duì)應(yīng)的的范圍,結(jié)合命題一個(gè)為真命題一個(gè)為假命題,即可列出的不等式組,求解即可.【小問1詳解】若q為真命題,則,解得,即實(shí)數(shù)k的取值范圍為.【小問2詳解】若p為真,,解得,由是假命題,且是真命題,得:p、q兩命題一真一假,當(dāng)p真q假時(shí),或,得,當(dāng)p假q真時(shí),,此時(shí)無解.綜上的取值范圍為.19、(1),分布列見解析;(2).【解析】(1)根據(jù)二項(xiàng)分布知識(shí)即可求解;(2)將補(bǔ)種棕櫚樹的概率轉(zhuǎn)化為成活的概率,結(jié)合概率加法公式即可求解.【小問1詳解】由題意知,,又,所以,故未成活率為,由于所有可能的取值為0,1,2,3,4,所以,,,,,則的分布列為01234【小問2詳解】記“需要補(bǔ)種棕櫚樹”為事件A,由(1)得,,所以需要補(bǔ)種棕櫚樹的概率為.20、(1),常數(shù)項(xiàng)為(2)5【解析】(1)求出二項(xiàng)式的通項(xiàng)公式,求出第3項(xiàng)和第4項(xiàng)的二項(xiàng)式系數(shù),再利用已知條件列方程求出的值,從而可求出常數(shù)項(xiàng),(2)設(shè)展開式中系數(shù)最大的項(xiàng)是第項(xiàng),則,從而可求出結(jié)果【小問1詳解】二項(xiàng)式展開式的通項(xiàng)公式為,因?yàn)榈?項(xiàng)和第4項(xiàng)的二項(xiàng)式系數(shù)比為,所以,化簡得,解得,所以,令,得,所以常數(shù)項(xiàng)為【小問2詳解】設(shè)展開式中系數(shù)最大的項(xiàng)是第項(xiàng),則,,解得,因?yàn)椋?,所以展開式中系數(shù)最大的項(xiàng)是第5項(xiàng)21、(1);(2)為等邊三角形【解析】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得sinB(2cosA﹣1)=0,從而得角A;(2)由S△ABC=bcsinA=,可得bc=3,①;再由余弦定理a2=b2+c2﹣2bccosA可得b2+c2=6,②;聯(lián)立①②可求得b=c=,從而可判斷△ABC的形狀【詳解】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得(2sinB﹣sinC)cosA﹣sinAcosC=0,∴2sinBcosA﹣sin(A+C)=0,sinB(2cosA﹣1)=0∵0<B<π,∴sinB≠0,∴cosA=.∵0<A<π,∴A=(2)△ABC為等邊三角形,∵S△ABC=bcsinA=,即bcsin=,∴bc=3,①∵a2=b2+c2﹣2bccosA,A=,a=,∴b2+c2=6,②由①②得b=c=,∴△ABC為等邊三角形【點(diǎn)睛】本題考查三角形形狀的判斷,著重考查正弦定理與余弦定理的應(yīng)用,考查方程思想與運(yùn)算求解能力,屬于中檔題22、(1)(2)存在,M與S重合【解析】(1)分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)蒙古建筑職業(yè)技術(shù)學(xué)院《工程流體力學(xué)B》2023-2024學(xué)年第二學(xué)期期末試卷
- 太原理工大學(xué)《熱流體學(xué)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東省日照市山海天旅游度假區(qū)2025年數(shù)學(xué)三下期末綜合測(cè)試模擬試題含解析
- 昆明學(xué)院《安全信息技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 延安大學(xué)《研究型建筑設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海對(duì)外經(jīng)貿(mào)大學(xué)《世界文化產(chǎn)業(yè)》2023-2024學(xué)年第一學(xué)期期末試卷
- 一嗨租車會(huì)員注冊(cè)協(xié)議書二零二五年
- 二零二五版裝修質(zhì)量保證及售后服務(wù)承諾書
- 二零二五版兼職人員聘用協(xié)議
- 買車補(bǔ)充協(xié)議書及相關(guān)合同書條款
- 酒店會(huì)議EO單范例
- 這個(gè)殺手不太冷解析
- 造口袋技術(shù)要求
- 國家開放大學(xué)(江西)地域文化(專)任務(wù)1-4試題及答案
- QCR 409-2017 鐵路后張法預(yù)應(yīng)力混凝土梁管道壓漿技術(shù)條件
- 南師地信培養(yǎng)方案
- 采購工作調(diào)研報(bào)告(3篇)
- 10KV高壓開關(guān)柜操作(培訓(xùn)課件PPT)
- 希爾國際商務(wù)第11版英文教材課件完整版電子教案
- 《學(xué)弈》優(yōu)質(zhì)課一等獎(jiǎng)?wù)n件
- 2023年6月大學(xué)英語四級(jí)考試真題(第1套)(含答案)
評(píng)論
0/150
提交評(píng)論