




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年湖北省顎東南省級示范高中高三數學試題下學期一模考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則集合()A. B. C. D.2.已知拋物線y2=4x的焦點為F,拋物線上任意一點P,且PQ⊥y軸交y軸于點Q,則的最小值為()A. B. C.l D.13.復數().A. B. C. D.4.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()5.執行如圖所示的程序框圖后,輸出的值為5,則的取值范圍是().A. B. C. D.6.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.7.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件8.若復數在復平面內對應的點在第二象限,則實數的取值范圍是()A. B. C. D.9.已知三棱錐的四個頂點都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.10.拋物線的焦點為,準線為,,是拋物線上的兩個動點,且滿足,設線段的中點在上的投影為,則的最大值是()A. B. C. D.11.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.12.定義運算,則函數的圖象是().A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數,對任意,有,且,則______.14.若復數滿足,其中是虛數單位,是的共軛復數,則________.15.若非零向量,滿足,,,則______.16.在中,角的對邊分別為,且,若外接圓的半徑為,則面積的最大值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,(其中).(1)求;(2)求證:當時,.18.(12分)已知直線是曲線的切線.(1)求函數的解析式,(2)若,證明:對于任意,有且僅有一個零點.19.(12分)如圖,是矩形,的頂點在邊上,點,分別是,上的動點(的長度滿足需求).設,,,且滿足.(1)求;(2)若,,求的最大值.20.(12分)已知件次品和件正品混放在一起,現需要通過檢測將其區分,每次隨機檢測一件產品,檢測后不放回,直到檢測出件次品或者檢測出件正品時檢測結束.(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;(2)已知每檢測一件產品需要費用元,設表示直到檢測出件次品或者檢測出件正品時所需要的檢測費用(單位:元),求的分布列.21.(12分)在平面直角坐標系xOy中,曲線C的參數方程為(為參數).以原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系.(1)設直線l的極坐標方程為,若直線l與曲線C交于兩點A.B,求AB的長;(2)設M、N是曲線C上的兩點,若,求面積的最大值.22.(10分)在中,角所對的邊分別是,且.(1)求角的大小;(2)若,求邊長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎題.2.A【解析】
設點,則點,,利用向量數量積的坐標運算可得,利用二次函數的性質可得最值.【詳解】解:設點,則點,,,,當時,取最小值,最小值為.故選:A.【點睛】本題考查拋物線背景下的向量的坐標運算,考查學生的計算能力,是基礎題.3.A【解析】試題分析:,故選A.【考點】復數運算【名師點睛】復數代數形式的四則運算的法則是進行復數運算的理論依據,加減運算類似于多項式的合并同類項,乘法法則類似于多項式的乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數化.4.D【解析】
由題意利用兩個向量坐標形式的運算法則,兩個向量平行、垂直的性質,得出結論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標對應不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標對應不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點睛】本題主要考查兩個向量坐標形式的運算,兩個向量平行、垂直的性質,屬于基礎題.5.C【解析】
框圖的功能是求等比數列的和,直到和不滿足給定的值時,退出循環,輸出n.【詳解】第一次循環:;第二次循環:;第三次循環:;第四次循環:;此時滿足輸出結果,故.故選:C.【點睛】本題考查程序框圖的應用,建議數據比較小時,可以一步一步的書寫,防止錯誤,是一道容易題.6.A【解析】
根據直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質,還考查了運算求解的能力,屬于基礎題.7.C【解析】
根據線面平行的性質定理和判定定理判斷與的關系即可得到答案.【詳解】若,根據線面平行的性質定理,可得;若,根據線面平行的判定定理,可得.故選:C.【點睛】本題主要考查了線面平行的性質定理和判定定理,屬于基礎題.8.B【解析】
復數,在復平面內對應的點在第二象限,可得關于a的不等式組,解得a的范圍.【詳解】,由其在復平面對應的點在第二象限,得,則.故選:B.【點睛】本題考查了復數的運算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎題.9.C【解析】
設為中點,先證明平面,得出為所求角,利用勾股定理計算,得出結論.【詳解】設分別是的中點平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項:【點睛】本題考查了棱錐與外接球的位置關系問題,關鍵是能夠通過垂直關系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.10.B【解析】
試題分析:設在直線上的投影分別是,則,,又是中點,所以,則,在中,所以,即,所以,故選B.考點:拋物線的性質.【名師點晴】在直線與拋物線的位置關系問題中,涉及到拋物線上的點到焦點的距離,焦點弦長,拋物線上的點到準線(或與準線平行的直線)的距離時,常常考慮用拋物線的定義進行問題的轉化.象本題弦的中點到準線的距離首先等于兩點到準線距離之和的一半,然后轉化為兩點到焦點的距離,從而與弦長之間可通過余弦定理建立關系.11.D【解析】
設非零向量與的夾角為,在等式兩邊平方,求出的值,進而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點睛】本題考查向量投影的計算,同時也考查利用向量的模計算向量的夾角,考查計算能力,屬于基礎題.12.A【解析】
由已知新運算的意義就是取得中的最小值,因此函數,只有選項中的圖象符合要求,故選A.二、填空題:本題共4小題,每小題5分,共20分。13.-1【解析】
由二項式定理及展開式系數的求法得,又,所以,令得:,所以,得解.【詳解】由,且,則,又,所以,令得:,所以,故答案為:.【點睛】本題考查了二項式定理及展開式系數的求法,意在考查學生對這些知識的理解掌握水平.14.【解析】
設,代入已知條件進行化簡,根據復數相等的條件,求得的值.【詳解】設,由,得,所以,所以.故答案為:【點睛】本小題主要考查共軛復數,考查復數相等的條件,屬于基礎題.15.1【解析】
根據向量的模長公式以及數量積公式,得出,解方程即可得出答案.【詳解】,即解得或(舍)故答案為:【點睛】本題主要考查了向量的數量積公式以及模長公式的應用,屬于中檔題.16.【解析】
由正弦定理,三角函數恒等變換的應用化簡已知等式,結合范圍可求的值,利用正弦定理可求的值,進而根據余弦定理,基本不等式可求的最大值,進而根據三角形的面積公式即可求解.【詳解】解:,由正弦定理可得:,,,又,,,即,可得:,外接圓的半徑為,,解得,由余弦定理,可得,又,(當且僅當時取等號),即最大值為4,面積的最大值為.故答案為:.【點睛】本題主要考查了正弦定理,三角函數恒等變換的應用,余弦定理,基本不等式,三角形的面積公式在解三角形中的應用,考查了轉化思想,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)見解析【解析】
(1)取,則;取,則,∴;(2)要證,只需證,當時,;假設當時,結論成立,即,兩邊同乘以3得:而∴,即時結論也成立,∴當時,成立.綜上原不等式獲證.18.(1)(2)證明見解析【解析】
(1)對函數求導,并設切點,利用點既在曲線上、又在切線上,列出方程組,解得,即可得答案;(2)當x充分小時,當x充分大時,可得至少有一個零點.再證明零點的唯一性,即對函數求導得,對分和兩種情況討論,即可得答案.【詳解】(1)根據題意,,設直線與曲線相切于點.根據題意,可得,解之得,所以.(2)由(1)可知,則當x充分小時,當x充分大時,∴至少有一個零點.∵,①若,則,在上單調遞增,∴有唯一零點.②若令,得有兩個極值點,∵,∴,∴.∴在上單調遞增,在上單調遞減,在上單調遞增.∴極大值為.,又,∴在(0,16)上單調遞增,∴,∴有唯一零點.綜上可知,對于任意,有且僅有一個零點.【點睛】本題考查導數的幾何意義的運用、利用導數證明函數的零點個數,考查函數與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力和運算求解能力,求解時注意零點存在定理的運用.19.(1)(2)【解析】
(1)利用正弦定理和余弦定理化簡,根據勾股定理逆定理求得.(2)設,由此求得的表達式,利用三角函數最值的求法,求得的最大值.【詳解】(1)設,,,由,根據正弦定理和余弦定理得.化簡整理得.由勾股定理逆定理得.(2)設,,由(1)的結論知.在中,,由,所以.在中,,由,所以.所以,由,所以當,即時,取得最大值,且最大值為.【點睛】本小題考查正弦定理,余弦定理,勾股定理,解三角形,三角函數性質及其三角恒等變換等基礎知識;考查運算求解能力,推理論證能力,化歸與轉換思想,應用意識.20.(1);(2)見解析.【解析】
(1)利用獨立事件的概率乘法公式可計算出所求事件的概率;(2)由題意可知隨機變量的可能取值有、、,計算出隨機變量在不同取值下的概率,由此可得出隨機變量的分布列.【詳解】(1)記“第一次檢測出的是次品且第二次檢測出的是正品”為事件,則;(2)由題意可知,隨機變量的可能取值為、、.則,,.故的分布列為【點睛】本題考查概率的計算,同時也考查了隨機變量分布列,考查計算能力,屬于基礎題.21.(1);(2)1.【解析】
(1)利用參數方程、普通方程、極坐標方程間的互化公式即可;(2),,由(1)通過計算得到,即最大值為1.【詳解】(1)將曲線C的參數方程化為普通方程為,即;再將,,代入上式,得,故曲線C的極坐標方程為,顯然直線l與曲線C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國鋼水測溫儀行業市場占有率及投資前景預測分析報告
- 中國切蘋果器行業市場前景預測及投資價值評估分析報告
- 中國壓舌板包裝行業市場前景預測及投資價值評估分析報告
- 中國磨頭行業市場前景預測及投資價值評估分析報告
- 租房技術改造合同協議
- 砂石磚采購合同協議
- 私人建房安全合同協議
- 租地合同終止協議范本
- 租賃加熱設備合同協議
- 種植梔子花合同協議
- 犯罪的種類課件
- 2022年12月18日浙江省(市)級機關面向基層遴選筆試真題及答案深度解析
- 慢性血栓栓塞性肺動脈高壓
- 兒童早期綜合發展課件
- 剪力墻平法識圖講義(PPT格式105)
- 北京中考英語詞匯表(1600詞匯)
- 專業工程分包業主審批表
- 藥劑科終止妊娠藥品管理制度
- 除草劑分類和使用方法
- 中遠集團養老保險工作管理程序
- 留守兒童幫扶記錄表
評論
0/150
提交評論