




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省西雙版納州勐海縣一中2025屆高二數學第一學期期末預測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.記等差數列的前n項和為,若,,則等于()A.5 B.31C.38 D.412.已知函數在處的導數為,則()A. B.C. D.3.在矩形中,,在該矩形內任取一點M,則事件“”發生的概率為()A. B.C. D.4.已知集合,,則()A. B.C. D.5.拋物線上有兩個點,焦點,已知,則線段的中點到軸的距離是()A.1 B.C.2 D.6.橢圓的離心率為()A. B.C. D.7.橢圓:與雙曲線:的離心率之積為2,則雙曲線的漸近線方程為()A. B.C. D.8.青花瓷是中華陶瓷燒制工藝的珍品,也是中國瓷器的主流品種之一.如圖,是一青花瓷花瓶,其外形上下對稱,可看成是雙曲線的一部分繞其虛軸旋轉所形成的曲面.若該花瓶的瓶口直徑為瓶身最小直徑的2倍,花瓶恰好能放入與其等高的正方體包裝箱內,則雙曲線的離心率為()A. B.C. D.9.在某次賽車中,名參賽選手的成績(單位:)全部介于到之間(包括和),將比賽成績分為五組:第一組,第二組,···,第五組,其頻率分布直方圖如圖所示.若成績在內的選手可獲獎,則這名選手中獲獎的人數為A. B.C. D.10.給出下列結論:①如果數據的平均數為3,方差為0.2,則的平均數和方差分別為14和1.8;②若兩個變量的線性相關性越強,則相關系數r的值越接近于1.③對A、B、C三種個體按3:1:2的比例進行分層抽樣調查,若抽取的A種個體有15個,則樣本容量為30.則正確的個數是().A.3 B.2C.1 D.011.設O為正方形ABCD的中心,在O,A,B,C,D中任取3點,則取到的3點共線的概率為()A. B.C. D.12.已知雙曲線的左、右焦點分別為,,過作圓的切線分別交雙曲線的左、右兩支于,,且,則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若曲線在處的切線平行于x軸,則___________.14.已知為拋物線上的動點,,,則的最小值為________.15.將連續的正整數填入n行n列的方陣中,使得每行、每列、每條對角線上的數之和相等,可得到n階幻方.記n階幻方每條對角線上的數之和為,如圖:,那么的值為___________.16.從編號為01,02,…,60的60個產品中用系統抽樣的方法抽取一個樣本,已知樣本中的前兩個編號分別為02,08(編號按從小到大的順序排列),則樣本中最大的編號是_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為,點為拋物線上一點,且.(1)求拋物線方程;(2)直線與拋物線相交于兩個不同的點,為坐標原點,若,求實數的值;18.(12分)已知函數在處取得極值確定a的值;若,討論的單調性19.(12分)已知雙曲線的左、右焦點分別為,,動點M滿足(1)求動點M的軌跡方程;(2)若動點M在雙曲線C上,設雙曲線C的左支上有兩個不同的點P,Q,點,且,直線NQ與雙曲線C交于另一點B.證明:動直線PB經過定點20.(12分)如圖,在四棱錐中,底面,底面是邊長為2的正方形,,F,G分別是,的中點(1)求證:平面;(2)求平面與平面的夾角的大小21.(12分)已知拋物線C:上一點與焦點F的距離為(1)求和p的值;(2)直線l:與C相交于A,B兩點,求直線AM,BM的斜率之積22.(10分)已知函數的圖像在(為自然對數的底數)處取得極值.(1)求實數的值;(2)若不等式在恒成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設等差數列的公差為d,首先根據題意得到,再解方程組即可得到答案.【詳解】解:設等差數列的公差為d,由題知:,解得.故選:A.2、C【解析】利用導數的定義即可求出【詳解】故選:C3、D【解析】利用幾何概型的概率公式,轉化為面積比直接求解.【詳解】以AB為直徑作圓,當點M在圓外時,.所以事件“”發生的概率為.故選:D4、A【解析】由已知得,因為,所以,故選A5、B【解析】利用拋物線的定義,將拋物線上的點到焦點的距離轉化為點到準線的距離,即可求出線段中點的橫坐標,即得到答案.【詳解】由已知可得拋物線的準線方程為,設點的坐標分別為和,由拋物線的定義得,即,線段中點的橫坐標為,故線段的中點到軸的距離是.故選:.6、A【解析】由橢圓標準方程求得,再計算出后可得離心率【詳解】在橢圓中,,,,因此,該橢圓的離心率為.故選:A.【點睛】本題考查求橢圓的離心率,根據橢圓標準方程求出即可7、C【解析】先求出橢圓的離心率,再由題意得出雙曲線的離心率,根據離心率即可求出漸近線斜率得解.【詳解】橢圓:的離心率為,則,依題意,雙曲線;的離心率為,而,于是得,解得:,所以雙曲線的漸近線方程為故選:C8、C【解析】由題意作出軸截面,最短直徑為2a,根據已知條件點(2a,2a)在雙曲線上,代入雙曲線的標準方程,結合a,b,c的關系可求得離心率e的值【詳解】由題意作出軸截面如圖:M點是雙曲線與截面正方形的交點之一,設雙曲線的方程為:最短瓶口直徑為A1A2=2a,則由已知可得M是雙曲線上的點,且M(2a,2a)故,整理得4a2=3b2=3(c2﹣a2),化簡后得,解得故選:C9、A【解析】先根據頻率分布直方圖確定成績在內的頻率,進而可求出結果.【詳解】由題意可得:成績在內的頻率為,又本次賽車中,共名參賽選手,所以,這名選手中獲獎的人數為.故選A【點睛】本題主要考查頻率分布直方圖,會根據頻率分布直方圖求頻率即可,屬于常考題型.10、B【解析】對結論逐一判斷【詳解】對于①,則的平均數為,方差為,故①正確對于②,若兩個變量的線性相關性越強,則相關系數r的絕對值越接近于1,故②錯誤對于③,對A、B、C三種個體按3:1:2的比例進行分層抽樣調查,若抽取的A種個體有15個,則樣本容量為,故③正確故正確結論為2個故選:B11、A【解析】列出從5個點選3個點的所有情況,再列出3點共線的情況,用古典概型的概率計算公式運算即可.【詳解】如圖,從5個點中任取3個有共種不同取法,3點共線只有與共2種情況,由古典概型的概率計算公式知,取到3點共線的概率為.故選:A【點晴】本題主要考查古典概型的概率計算問題,采用列舉法,考查學生數學運算能力,是一道容易題.12、D【解析】直線的斜率為,計算,,利用余弦定理得到,化簡知,得到答案【詳解】由題意知直線的斜率為,,又,由雙曲線定義知,,.由余弦定理:,,即,即,解得.故雙曲線漸近線的方程為.故答案選D【點睛】本題考查了雙曲線的漸近線,與圓的關系,意在考查學生的綜合應用能力和計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出導函數得到函數在時的導數,由導數值為0求得a的值【詳解】由,得,則,∵曲線在點處的切線平行于x軸,∴,即.故答案為:14、6【解析】根據拋物線的定義把的長轉化為到準線的距離為,進而數形結合求出最小值.【詳解】易知為拋物線的焦點,設到準線的距離為,則,而的最小值為到準線的距離,故的最小值為.故答案為:615、34【解析】根據每行數字之和相等,四行數字之和剛好等于1到16之和可得.【詳解】4階幻方中,4行數字之和,得.故答案為:3416、56【解析】根據系統抽樣的定義得到編號之間的關系,即可得到結論.【詳解】由已知樣本中的前兩個編號分別為02,08,則樣本數據間距為,則樣本容量為,則對應的號碼數,則當時,x取得最大值為56故答案為:56三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據拋物線過點,且,利用拋物線的定義求解;(2)設,聯立,根據,由,結合韋達定理求解.【小問1詳解】解:由拋物線過點,且,得所以拋物線方程為;【小問2詳解】設,聯立得,,,,則,,即,解得或,又當時,直線與拋物線的交點中有一點與原點重合,不符合題意,故舍去;所以實數的值為.18、(1)(2)在和內為減函數,在和內為增函數【解析】(1)對求導得,因為在處取得極值,所以,即,解得;(2)由(1)得,,故,令,解得或,當時,,故為減函數,當時,,故為增函數,當時,,故為減函數,當時,,故為增函數,綜上所知:和是函數單調減區間,和是函數的單調增區間.19、(1)(2)證明見解析【解析】(1)根據雙曲線的定義求得的值得雙曲線方程;(2)確定垂直于軸,設直線BP的方程為,設,,則,直線方程代入雙曲線方程,由相交求得范圍,由韋達定理,利用N、B、Q三點共線,且NQ斜率存在,由斜率相等得出的關系,代入韋達定理的結論可求得的值,從而得直線BP所過定點【小問1詳解】因為,所以,動點M的軌跡是以點、為左、右焦點的雙曲線的左支,則,可得,,所以,點M的軌跡方程為;【小問2詳解】證明:∵,∴直線PQ垂直于x軸,易知,直線BP的斜率存在且不為0,設直線BP的方程為,設,,則,聯立,化簡得:,直線與雙曲線左支、右支各有一個交點,需滿足或,∴,,又,又N、B、Q三點共線,且NQ斜率存在,∴,即,∴,∴,∴,化簡得:,∴,∴,即,滿足判別式大于0,即直線BP方程為,所以直線BP過定點20、(1)證明見解析(2)【解析】(1)取中點連接,連接,證得四邊形為平行四邊形,,再證面,即可得到證明結果;(2)建立空間坐標系,求面和面的法向量,即可得到兩個面的二面角的余弦值,進而得到二面角大小.【小問1詳解】如上圖,取中點連接,連接,均為線段中點,且,又G是的中點,且且四邊形為平行四邊形為等腰直角三角形,為斜邊中點,面,面面又面.【小問2詳解】建立如圖坐標系,設面的法向量為設面的法向量為兩個法向量的夾角余弦值為:,由圖知兩個面的二面角為鈍角,故夾角為.21、(1)(2)【解析】(1)結合拋物線的定義以及點坐標求得以及.(2)求得的坐標,由此求得直線AM,BM的斜率之積.【小問1詳解】依題意拋物線C:上一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 行政法學知識拓展試題及答案解析
- 2025年VB考試全解及試題及答案
- 經典法學概論考題試題及答案
- 醫院整體規劃與未來發展方向計劃
- 2025珠寶首飾等質押合同
- 門診部護士長工作計劃
- 2025年網絡管理員考試評估標準試題及答案
- 2025年考試過來人的建議試題及答案
- AI驅動的智能應用開發試題及答案
- 行政管理人本思想試題及答案
- 第6課 全球航路的開辟 說課稿 -2023-2024學年高一下學期統編版(2019)必修中外歷史綱要下冊
- 《數據資產會計》 課件 第二章 數據的資產化
- 融資融券業務流程詳解
- 高考英語高頻詞600
- 2024年高考真題-生物(黑吉遼卷) 含解析
- YY/T 0063-2024醫用電氣設備醫用診斷X射線管組件焦點尺寸及相關特性
- 2024年湖北省中考地理·生物試卷(含答案解析)
- GB/T 44241-2024虛擬電廠管理規范
- JGT 160-2017 混凝土用機械錨栓
- 南通輔警考試題庫
- 連續蒸煮螺旋喂料器
評論
0/150
提交評論