




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
信號與系統SignalsandSystems吉林大學PropertiesofLaplacetransform:RightShiftinTimeProperty3:RightshiftintimeProof:Property3:Rightshiftintime(3)Property3:RightshiftintimeSolution:信號與系統SignalsandSystems吉林大學PropertiesofLaplaceTransform:TimeScalingProperty4:TimescalingProof:信號與系統SignalsandSystems吉林大學PropertiesofLaplaceTransform:ConvolutionTheoremsProperty5:Convolutioninthet-domainProof:Property5:Convolutioninthet-domainContinued:Property
6:Convolutioninthes-domainProof:信號與系統SignalsandSystems吉林大學PropertiesofLaplaceTransform:Differentiationinthet-domainProperty7:Differentiationinthet-domainProof:信號與系統SignalsandSystems吉林大學PropertiesofLaplaceTransform:Integrationinthet-domainProperty8:Integrationinthet-domainProof:Property8:Integrationinthet-domain信號與系統SignalsandSystems吉林大學PropertiesofLaplaceTransform:DifferentiationandIntegrationinthes-DomainProperty9:Differentiationinthes-domainProof:Property10:Integrationinthes-domainProof:信號與系統SignalsandSystems吉林大學PropertiesofLaplaceTransform:InitialandFinal-ValuetheoremsProperty11:Initial-valuetheoremProof:Property12:Final-valuetheoremProof:信號與系統SignalsandSystems吉林大學ComputationoftheInverseLaplaceTransform(Ⅱ)PartialFractionExpansionComputationoftheinverseLaplacetransform(Ⅱ)Partialfractionexpansion(1)Conditions:ComputationoftheinverseLaplacetransform(Ⅱ)Partialfractionexpansion(2)ComputationoftheinverseLaplacetransform(Ⅱ)Partialfractionexpansion(3)信號與系統SignalsandSystems吉林大學SolvingtheDifferentialEquationsinthes-DomainSolvingthedifferentialequationsinthes-domain[Example]Given:Find:
Solvingthedifferentialequationsinthes-domainSolvingthedifferentialequationsinthes-domainSolvingthedifferentialequationsinthes-domain信號與系統SignalsandSystems吉林大學Thes-DomainRepresentationsofCircuits(I)Thes-domainrepresentationsofcircuits(I)1Thes-domainequivalentcircuitelementsThesameresistanceThes-domainrepresentationsofcircuits(I)1Thes-domainequivalentcircuitelementsThes-domainimpedanceThes-domainrepresentationsofcircuits(I)1Thes-domainequivalentcircuitelementsThes-domainimpedanceThes-domainrepresentationsofcircuits(I)2TheformsofKVLandKCLinthes-domain信號與系統SignalsandSystems吉林大學TheBlockDiagramofaSysteminthes-DomainTheblockdiagramofasysteminthes-domainScalarmultiplier1Adder/Subtractor2Theblockdiagramofasysteminthes-domainIntegrator3信號與系統SignalsandSystems吉林大學TheDefinitionofTransferFunctionanditsSolutionsThedefinitionoftransferfunctionanditssolutionsThetransferfunctionⅠHowtofind21.GiventhesystemdifferentialequationThedefinitionoftransferfunctionanditssolutionsHowtofind21.GiventhesystemdifferentialequationThedefinitionoftransferfunctionanditssolutions2.Giventheimpulseresponseh(t)Thedefinitionoftransferfunctionanditssolutions3.GiventhestructureofthecircuitUsingthedefinitioninthes-domainrepresentationofthecircuit.4.Usingthepole-zeroplot信號與系統SignalsandSystems吉林大學TheTransferFunctionandthePole-ZeroPlotThetransferfunctionandthepole-zeroplotPolesandzeros1Zeros:Poles:Thetransferfunctionandthepole-zeroplotThepole-zeroplot2Aplotinthecomplexplaneshowingthelocationsofallthepoles(markedby×)andallthezeros(markedby○)iscalledthepole-zeroplot.Zeros:Poles:信號與系統SignalsandSystems吉林大學ApplicationsofthePole-ZeroPlot:DeterminingtheFormofh(t)Thepoles
beinglocatedintheopen
left-halfcomplexplane1Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles
beinglocatedintheopen
left-halfcomplexplane1Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles
beinglocatedattheorigin2Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles
beinglocatedontheimaginaryaxis3Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles
beinglocatedintheopen
right-halfcomplexplane4Applicationsofthepole-zeroplot:Determiningtheformofh(t)信號與系統SignalsandSystems吉林大學Time-DomainAnalysisofDiscrete-TimeSystemsDiscrete-TimeSignalsDiscrete-TimeSignalsAdiscrete-timesignalf(k)hasvaluesforsomediscontinuouspointwhilehasnotdefinitionforotherpoints.k—integerDefinitionDiscrete-TimeSignalsAnalyticalmethod:Graphicalmethod:Sequencemethod:k=0RepresentationDiscrete-TimeSignalEnergyandPowerEnergy:Power:OperationofDiscrete-TimeSignalsAddition:Multiplication:Difference:forwarddifference:backwarddifferenceRunningsum:OperationofDiscrete-TimeSignalsTimeshift(m>0)RightshiftLeftshiftTransformationsoftheIndependentVariableOperationofDiscrete-TimeSignalsTimereversalTransformationsoftheIndependentVariablef(-k)isobtainedfromthesignalf(k)
byareflectionaboutk=0.BasicDiscrete-TimeSignalsUnitImpulseSequence(UnitSampleSequence)BasicDiscrete-TimeSignalsUnitStepSequenceBasicDiscrete-TimeSignalsRelationshipbetweend(k)ande(k)BasicDiscrete-TimeSignalsRectangularSequenceBasicDiscrete-TimeSignalsUnilateralexponentialsequenceswithrealvalues:f(k)=ak
(k)(aisarealnumber)BasicDiscrete-TimeSignalsUnitrampsequenceSinusoidalSequencesComplexExponentialSequences:Canda:complexnumbers信號與系統SignalsandSystems吉林大學RepresentationsofDiscrete-TimeSystemsRepresentationsofDiscrete-TimeSystemsAdiscrete-timesystemisasystemthattransformsdiscrete-timeinputsintodiscrete-timeoutputs.Definitionf(k):inputy(k):outputInput-outputrelation:f(k)→
y(k)RepresentationsofDiscrete-TimeSystemsnth-orderLinearConstant-CoefficientDifferenceEquation:LTISystemsDescribedbyDifferenceEquatioconstantsRepresentationsofDiscrete-TimeSystemsBlockDiagramRepresentationBasicelementsMultiplicationbyacoefficientAdderUnitDelayElementRepresentationsofDiscrete-TimeSystemsInterconnectionsofSystemsSeries(Cascade)interconnectionParallelinterconnectionFeedbackinterconnection信號與系統SignalsandSystems吉林大學Linearinput/outputdifferenceequationswithconstantcoefficientsInput:f(k)=0fork<0InitialCondition:y(0),y(1),y(2),…,y(n-1)InitialState:y(-1),y(-2),…,y(-n)Linearinput/outputdifferenceequationswithconstantcoefficientsEquation:Solution:Linearinput/outputdifferenceequationswithconstantcoefficientsTheHomogeneousSolutionHomogeneousequation
CharacteristicequationCharacteristicroot
j(j=1,2,3,
,n)HomogeneoussolutionLinearinput/outputdifferenceequationswithconstantcoefficientsTheHomogeneousSolutionExample:y(k)+3y(k-1)+2y(k-2)=f(k),f(k)=2k,k
≥0,y(0)=0,y(1)=2.Findyh(k)
.Characteristicequation:Homogeneousequation
CharacteristicequationCharacteristicroot
j(j=1,2,3,
,n)HomogeneoussolutionLinearinput/outputdifferenceequationswithconstantcoefficientsTheParticularSolutionLinearinput/outputdifferenceequationswithconstantcoefficientsTheParticularSolutionExample:y(k)+3y(k-1)+2y(k-2)=f(k),f(k)=2k,k
≥0,y(0)=0,y(1)=2.Findyp(k),k
≥0.Letyp(k)=P·2k,k
≥0Substitutethesystemequation:信號與系統SignalsandSystems吉林大學TheZero-InputResponse
and
TheZero-StateResponseTheZero-InputResponse
Characteristicequation
j,(j=1,2,3,
,n)CharacteristicrootZero-InputResponse
yzi
(0),yzi
(1),…,yzi
(n-1)y(-1),y(-2),…,y(-n)
yzi(k)=y(k)-
yzs(k)=y(k),k<0InitialconditionCharacteristicequation:Characteristicroots:Zero-InputResponse:Example:TheZero-InputResponsey(k)+3y(k-1)+2y(k-2)=f(k),f(k)=2kε(k),y(-1)=0,y(-2)=1/2.Findyzi(k),k
≥0.yzi(k)+3yzi(k-1)+2yzi(k-2)=0TheZero-StateResponseCharacteristicequation
j
(j=1,2,3,
,n)Characteristicroot(distinctroots
j
)Zero-StateResponseyzs(-1)=yzs(-2)=…=yzs
(-n)=0Initialstateyzs(0),yzs
(1),…,yzs
(n-1)Initialcondition信號與系統SignalsandSystems吉林大學TheUnitSampleResponse
and
TheUnitStepResponseTheUnitSampleResponseDefinitionTheunitsampleresponseisthezero-stateresponseofthesystemresultingfromtheapplicationoftheunitpulse
(k).Denotedh(k)Initialstateh(-1)=h(-2)=…=h(-n)=0Initialconditionh(0),h(1),h(2),…,h(n-1)HowtofindSolvingadifferenceequationZ-transformTheUnitSampleResponseDeterminationk<0:
(k)
=0,h(k)=0k=0:
(k)
=1,h(0)——recursionk>0:
(k)
=0,h(k)——solutionofahomogeneousequationLTI
system:LetthenCi:determinedbyh1(1),h1(2),…,h1(n)TheUnitStepResponseDefinitionTheunitstepresponseisthezero-stateresponseofthesystemresultingfromtheapplicationoftheunitstepsequencee
(k).Denotedg(k)Initialstateg(-1)=g(-2)=…=g(-n)=0Relationshipbetweenh(k)andg(k)信號與系統SignalsandSystems吉林大學ConvolutionSumConvolutionSum
Ingeneral,twodiscrete-timesignalsf1(k)andf2(k)DefinitionExample1:ConvolutionSumConvolution-SumRepresentationofLTIdiscrete-timesystemsThezero-stateresponse:ConvolutionSum:GraphicalRepresentationGraphicalRepresentationoftheconvolutionsumProcedure:Step1.Drawf1(i)andf2(i)Step2.Reverse
f2(i):f2(i)
f2(-i)Step3.Shift
f2(-i)bykpositiontotheright:f2(-i)
f2(k-i)
Step4.Multiplicationoff1(i)withf2(k-i):
f1(i)f2(k-i)
Step5.Summationoftheproductforallvaluesofi
yieldsonevalueofy(k)Step6.Repeatsteps3and5forallvaluesofk信號與系統SignalsandSystems吉林大學PropertiesoftheConvolutionSumPropertiesoftheConvolutionSumCommutativityProof:PropertiesoftheConvolutionSumAssociativityProof:CascadeinterconnectionofLTIsystemsPropertiesoftheConvolutionSumDistributivitywithadditionProof:ParallelinterconnectionofLTIsystemsPropertiesoftheConvolutionConvolutionwiththeunitpulseProof:Ifk1=0,thenPropertiesoftheConvolutionShiftpropertyProof:Iff(k)=f1(k)*f2(k),then
信號與系統SignalsandSystems吉林大學TheAnalysisofDiscrete-TimeSystemsinthez-DomainThez-TransformDefinitionofthez-TransformDefinitionofthez-TransformIntuitionontheRelationbetweenZTandLTLT:Let:Definitionofthez-TransformDefinitionBilateral(two-sided)z-Transform:Unilateral(one-sided)z-Transform:Thetransformpairnotation:信號與系統SignalsandSystems吉林大學Thez-TransformCommonz-transformpairsCommonz-transformpairsUnitSampleSequenceCommonz-transformpairsOne-sideExponentialSequencewhereaisarealorcomplexnumber.UnitStepSequenceCommonz-transformpairswhere
aisarealorcomplexnumber.信號與系統SignalsandSystems吉林大學TheRegionofConvergenceforthez-TransformDefinitionTheRegionofConvergenceforthez-TransformThesetofallcomplexnumberszsuchthatthesummationontheright-handside
convergesiscalledtheregionofconvergence(ROC)ofthez-transformF(z).F(z)converges:f(k)z-kisabsolutelysummableFinite-durationsequenceTheRegionofConvergenceforthez-Transformf(k)=0,k
<k1,k>k2,k1<k2k1<0,k2>0:
k1<0,k2
0:k10,k2
>0:0<|z|<
|z|<
|z|>0Example:CausalsequenceTheRegionofConvergenceforthez-Transformf(k)=0,k<0Example:z-planeak
(k),aisarealorcomplexnumber.AnticausalsequenceTheRegionofConvergenceforthez-TransformExample:f(k)=0,k≥0f(k)=-ak
(-k-1),aisarealorcomplexnumber.Two-sidedsequenceTheRegionofConvergenceforthez-Transformk=-∞→+∞
0<R1<R2<:R1<|z|<R2
R1>R2
:
ROCdoesnotconvergeTheRegionofConvergenceforthez-TransformROCisboundedbypolesorextendstoinfinity.F(z)isrational:f(k)ROCrightsidedoutsidetheoutermostpole——outsidethecircleofradiusequaltothelargestmagnitudeofthepolesofF(z)leftsidedinsidetheinnermostnonzeropole——insidethecircleofradiusequaltothesmallestmagnitudeofthepolesofF(z)otherthananyatz=0andextendinginwardtoandpossiblyincludingz=0.信號與系統SignalsandSystems吉林大學Propertiesofthez-Transform——LinearityIff1(k)
F1(z),
1<
z
<
1,f2(k)
F2(z),
2<
z
<
2,thenLinearityExample:Iff1(k)
F1(z),
1<
z
<
1,f2(k)
F2(z),
2<
z
<
2,thenLinearityExample:信號與系統SignalsandSystems吉林大學Propertiesofthez-Transform——TimeShiftingTimeShiftingExample:Bilateralz-TransformIff(k)
F(z),
<
z
<
,thenwheremisapositiveinteger.TimeShiftingProof:Unilateralz-Transform——RightshiftIff(k)
F(z),
z
>
,thenwheremisapositiveinteger.TimeShiftingUnilateralz-Transform——RightshiftIff(k)=0,k<0,thenExample:Iff(k)
F(z),
z
>
,thenwheremisapositiveinteger.TimeShiftingUnilateralz-Transform——LeftshiftIff(k)
F(z),
z
>
,thenwheremisapositiveinteger.Proof:TimeShiftingUnilateralz-Transform——LeftshiftIff(k)
F(z),
z
>
,thenwheremisapositiveinteger.Example:
(k+1)信號與系統SignalsandSystems吉林大學Propertiesofthez-Transform——Scalinginthez-DomainScalinginthez-DomainProof:Iff(k)
F(z),R1<|z|<R2
,thenaisanonzerorealorcomplexnumber.ROCofF(z):ROCof
:Scalinginthez-DomainIff(k)
F(z),R1<|z|<R2
,thenaisanonzerorealorcomplexnumber.Example:
aksin(
k)
(k),0<a<1Scalinginthez-DomainIff(k)
F(z),R1<|z|<R2
,thenaisanonzerorealorcomplexnumber.Example:(-1)k
(k)信號與系統SignalsandSystems吉林大學Propertiesofthez-Transform——ConvolutionConvolutionProof:Iff1(k)
F1(z),
1<z<
1,f2(k)
F2(z),
2<z<
2,thenConvolutionIff1(k)
F1(z),
1<z<
1,f2(k)
F2(z),
2<z<
2,thenExample:(k+1)
(k)LTIsystems:信號與系統SignalsandSystems吉林大學Propertiesofthez-Transform——DifferentiationandIntegralinthez-DomainDifferentiationinthez-DomainProof:Iff(k)
F(z),
<
z
<
,then
wherekisanypositiveinteger.Differentiationinthez-DomainIff(k)
F(z),
<
z
<
,then
wherekisanypositiveinteger.Example:Ifa=1,thenDifferentiationinthez-DomainIff(k)
F(z),
<
z
<
,then
wherekisanypositiveinteger.Integralinthez-DomainProof:Iff(k)
F(z),
<
z
<
,then
(misaninteger,andk+m>0)Integralinthez-DomainIff(k)
F(z),
<
z
<
,then
(misaninteger,andk+m>0)Example:Integralinthez-DomainIff(k)
F(z),
<
z
<
,then
(misaninteger,andk+m>0)m=0,k>0:信號與系統SignalsandSystems吉林大學Propertiesofthez-Transform——Reflectioninthek-domainReflectioninthek-domainProof:Iff(k)
F(z),
<
z
<
,then
Example:信號與系統SignalsandSystems吉林大學Propertiesofthez-Transform——SummationSummationProof:Iff(k)
F(z),
<
z
<
,then
Example:信號與系統SignalsandSystems吉林大學Propertiesofthez-Transform——Initial-ValueTheoremandFinal-ValueTheoremInitial-ValueTheoremProof:Iff(k)=0,k<0,andf(k)
F(z),then
Example:0Thez-transformofacausalsequencef(k)isfindf(0).Final-ValueTheoremProof:Iff(k)=0,k<0,f(k)
F(z),a<
z<,0≤a<1,then
Final-ValueTheoremIff(k)=0,k<0,f(k)
F(z),a<
z<,0≤a<1,then
Example:f(k)=0,k<0. aisarealnumber,findf(
).Final-ValueTheorem√√××Final-ValueTheoremIff(k)=0,k<0,f(k)
F(z),a<
z<,0≤a<1,then
Example:f(k)=0,k<0. aisarealnumber,findf(
).Final-ValueTheoremIfF(z)isrationalandthepolesof(z-1)F(z)havemagnitudes<1,then
Example:Thez-transformofacausalsequencef(k)is
Poles:信號與系統SignalsandSystems吉林大學TheInversez-TransformTheInversez-Transform(IZT)Integral:DefinitionalongacounterclockwiseclosedcircularcontourthatiscontainedintheROCofF(z).AlternativeproceduresPower-seriesexpansionsPartialfractionexpansionsROCandtheInversez-TransformROCf(k)Causalsequence|z|>af1(k)e
(k)Anticausalsequence|z|<bf2(k)e
(-k-1)Two-sidedsequencea<|z|<b
f1(k)e(k)+
f2(k)e
(-k-1)信號與系統SignalsandSystems吉林大學TheInversez-Transform——PartialfractionexpansionsPartialfractionexpansionsRationalpolynomial:Procedure:PartialfractionexpansionsF(z)f(k)×zIZTPartialfractionexpansions
DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(1)Example:Partialfractionexpansions
DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(2)Example:Partialfractionexpansions
DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(3)Example:Partialfractionexpansions
DistinctPolesz1,2=ae±jbROC:|z|>
Complex
Poles:Partialfractionexpansions
DistinctPolesz1,2=ae±jbComplex
Poles:Example:PartialfractionexpansionsRepeatePolesSupposethatthepolez1isrepeatedrtimes.Matchingcoefficients:Example:PartialfractionexpansionsExample:Step1DividethroughtoobtainwhereF1(z)isstrictlyproper.Step2CarryoutthepartialfractionexpansionofF1(z)and,knowingtheROC,obtaintheinversez-transform.信號與系統SignalsandSystems吉林大學z-DomainAnalysis—TransformoftheInput/outputDifferenceEquationTransformoftheInput/outputDifferenceEquationLTIsystem:Input:f(k)=0,k<0Initialstate:y(-1),y(-2),…,y(-n)z-Transform:Y(z)=Yzi(z)+Yzs(z)IZT:y(k)=yzi(k)+yzs(k)TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.信號與系統SignalsandSystems吉林大學z-DomainAnalysis—TheSystemFunctionTheSystemFunction(TransferFunction)DefinitionDeterminationofthesystemfunction(1)
H(z)=Yzs(z)/F(z)(2)H(z)=Z[h(k)]SystemFunctionofInterconnectionsSeriesconnectionH(z)ParallelconnectionH(z)Parallelconnection
H(z)SystemFunctionforInterconnectionsofLTISystemsExample:Determinethezero-stateoftheLTIsystem.Pole-zeroPlotoftheSystemFunctionPole-zeroplotExample:Aplotofthelocationsinthecomplexplaneofthepolesandzeros.Zerosro
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 體育館翻新包清工合同樣本
- 胸部創傷急救規范
- 公寓精裝修銷售合同
- 2025年度辦公場所安全應急預案協議書
- 兒童營養水果配送服務協議
- 肱骨外髁骨折護理查房
- 2024浙江經貿職業技術學院(中職)工作人員招聘考試及答案
- 2024沈陽市城市建設管理學校工作人員招聘考試及答案
- 2024濟南二機床高級技工學校工作人員招聘考試及答案
- 2024濱州航空中等職業學校工作人員招聘考試及答案
- 水培吊蘭的養殖方法要領
- 動物的遷徙行為與地球生態系統
- 總成修理工安全操作規程
- 【小學心理健康教育分析國內外文獻綜述4100字】
- 校園金話筒大賽(臨沂賽區)策劃書
- 正確使用文丘里面罩
- 破碎錘施工方案
- 2023年10月自考00161財務報表分析(一)試題及答案含評分標準
- 讀書分享讀書交流會《朝聞道》劉慈欣科幻小說讀書分享
- 大學物理第8章-機械振動
- 《線面平行的判定》課件
評論
0/150
提交評論