




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
上海市曹楊二中2025屆數(shù)學高一上期末學業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.條件p:|x|>x,條件q:,則p是q的()A.充要條件 B.既不充分也不必要條件C.必要不充分條件 D.充分不必要條件2.若函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.3.下列命題中正確的是()A.第一象限角小于第二象限角 B.銳角一定是第一象限角C.第二象限角是鈍角 D.平角大于第二象限角4.已知,則下列選項錯誤的是()A. B.C.的最大值是 D.的最小值是5.若且,則下列不等式中一定成立的是A. B.C. D.6.若函數(shù)是偶函數(shù),則的單調(diào)遞增區(qū)間為()A. B.C. D.7.設為偶函數(shù),且在區(qū)間上單調(diào)遞減,,則的解集為()A.(-1,1) B.C. D.(2,4)8.已知一組數(shù)據(jù)為20,30,40,50,50,50,70,80,其平均數(shù)、第60百分位數(shù)和眾數(shù)的大小關系是()A.平均數(shù)=第60百分位數(shù)>眾數(shù) B.平均數(shù)<第60百分位數(shù)=眾數(shù)C.第60百分位數(shù)=眾數(shù)<平均數(shù) D.平均數(shù)=第60百分位數(shù)=眾數(shù)9.函數(shù)的定義域為()A.B.且C.且D.10.已知向量和的夾角為,且,則A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若是兩個相交平面,則在下列命題中,真命題的序號為________.(寫出所有真命題的序號)①若直線,則在平面內(nèi),一定不存在與直線平行的直線②若直線,則在平面內(nèi),一定存在無數(shù)條直線與直線垂直③若直線,則在平面內(nèi),不一定存在與直線垂直的直線④若直線,則在平面內(nèi),一定存在與直線垂直的直線12.已知對于任意x,y均有,且時,,則是_____(填奇或偶)函數(shù)13.已知與之間的一組數(shù)據(jù)如下,且它們之間存在較好的線性關系,則與的回歸直線方程必過定點__________14.在平面直角坐標系中,正三角形ABC的邊BC所在直線的斜率是0,則AC,AB所在直線的斜率之和為________15.已知扇形的圓心角為,面積為,則該扇形的弧長為___________.16.已知向量,,若,,,則的值為__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.函數(shù)的定義域.18.已知函數(shù).(1)若的圖象恒在直線上方,求實數(shù)的取值范圍;(2)若不等式在區(qū)間上恒成立,求實數(shù)的取值范圍.19.已知函數(shù).(1)若在上單調(diào)遞增,求的取值范圍;(2)討論函數(shù)的零點個數(shù).20.如圖,已知等腰梯形中,,,是的中點,,將沿著翻折成,使平面平面.(1)求證:平面;(2)求與平面所成的角;(3)在線段上是否存在點,使得平面,若存在,求出的值;若不存在,說明理由.21.化簡或計算下列各式.(1);(2)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】解不等式得到p:,q:或,根據(jù)推出關系得到答案.【詳解】由得:,所以p:,而,解得:或,故q:或,因為或,且或,故p是q的充分不必要條件故答案為:D2、B【解析】令,則可得,解出即可.【詳解】令,其對稱軸為,要使在上是增函數(shù),則應滿足,解得.故選:B.3、B【解析】根據(jù)象限角的定義及銳角、鈍角及平角的大小逐一分析判斷即可得解.【詳解】解:為第一象限角,為第二象限角,故A錯誤;因為銳角,所以銳角一定是第一象限角,故B正確;因為鈍角,平角,為第二象限角,故CD錯誤.故選:B.4、D【解析】根據(jù)題意求出b的范圍可以判斷A,然后結合基本不等式判斷B,C,最后消元通過二次函數(shù)的角度判斷D.【詳解】對A,,正確;對B,,當且僅當時取“=”,正確;對C,,當且僅當時取“=”,正確;對D,由題意,,由A可知,所以,錯誤.故選:D.5、D【解析】利用不等式的性質(zhì)逐個檢驗即可得到答案.【詳解】A,a>b且c∈R,當c小于等于0時不等式不成立,故錯誤;Ba,b,c∈R,且a>b,可得a﹣b>0,當c=0時不等式不成立,故錯誤;,C,舉反例,a=2,b=-1滿足a>b,但不滿足,故錯誤;D,將不等式化簡即可得到a>b,成立,故選D.【點睛】本題主要考查不等式的性質(zhì)以及排除法的應用,屬于簡單題.用特例代替題設所給的一般性條件,得出特殊結論,然后對各個選項進行檢驗,從而做出正確的判斷,這種方法叫做特殊法.若結果為定值,則可采用此法.特殊法是“小題小做”的重要策略.常用的特例有特殊數(shù)值、特殊數(shù)列、特殊函數(shù)、特殊圖形、特殊角、特殊位置等6、B【解析】利用函數(shù)是偶函數(shù),可得,解出.再利用二次函數(shù)的單調(diào)性即可得出單調(diào)區(qū)間【詳解】解:函數(shù)是偶函數(shù),,,化為,對于任意實數(shù)恒成立,,解得;,利用二次函數(shù)的單調(diào)性,可得其單調(diào)遞增區(qū)間為故選:B【點睛】本題考查函數(shù)的奇偶性和對稱性的應用,熟練掌握函數(shù)的奇偶性和二次函數(shù)的單調(diào)性是解題的關鍵.7、C【解析】由奇偶性可知的區(qū)間單調(diào)性及,畫出函數(shù)草圖,由函數(shù)不等式及函數(shù)圖象求解集即可.【詳解】根據(jù)題意,偶函數(shù)在上單調(diào)遞減且,則在上單調(diào)遞增,且函數(shù)的草圖如圖,或,由圖可得-2<x<0或x>2,即不等式的解集為故選:C8、B【解析】從數(shù)據(jù)為20,30,40,50,50,50,70,80中計算出平均數(shù)、第60百分位數(shù)和眾數(shù),進行比較即可.【詳解】解:平均數(shù)為,,第5個數(shù)50即為第60百分位數(shù).又眾數(shù)為50,它們的大小關系是平均數(shù)第60百分位數(shù)眾數(shù).故選:B.9、C【解析】根據(jù)給定函數(shù)有意義直接列出不等式組,解不等式組作答.【詳解】依題意,,解得且,所以的定義域為且.故選:C10、D【解析】根據(jù)數(shù)量積的運算律直接展開,將向量的夾角與模代入數(shù)據(jù),得到結果【詳解】=8+3-18=8+3×2×3×-18=-1,故選D.【點睛】本題考查數(shù)量積的運算,屬于基礎題二、填空題:本大題共6小題,每小題5分,共30分。11、②④【解析】①當時,在平面內(nèi)存在與直線平行的直線.②若直線,則平面的交線必與直線垂直,而在平面內(nèi)與平面的交線平行的直線有無數(shù)條,因此在平面內(nèi),一定存在無數(shù)條直線與直線垂直.③當直線為平面的交線時,在平面內(nèi)一定存在與直線垂直的直線.④當直線為平面的交線,或與交線平行,或垂直于平面時,顯然在平面內(nèi)一定存在與直線垂直的直線.當直線為平面斜線時,過直線上一點作直線垂直平面,設直線在平面上射影為,則平面內(nèi)作直線垂直于,則必有直線垂直于直線,因此在平面內(nèi),一定存在與直線垂直的直線考點:直線與平面平行與垂直關系12、奇函數(shù)【解析】賦值,可求得,再賦值即可得到,利用奇偶性的定義可判斷奇偶性;【詳解】,令,得,,再令,得,是上的奇函數(shù);【點睛】本題考查了賦值法及奇函數(shù)的定義13、【解析】因為與的回歸直線方程必過定點則與的回歸直線方程必過定點.即答案為.14、0【解析】由于正三角形的內(nèi)角都為,且邊BC所在直線的斜率是0,不妨設邊AB所在直線的傾斜角為,則斜率為,則邊AC所在直線的傾斜角為,斜率為,所以AC,AB所在直線的斜率之和為15、【解析】由扇形的圓心角與面積求得半徑再利用弧長公式即可求弧長.【詳解】設扇形的半徑為r,由扇形的面積公式得:,解得,該扇形的弧長為.故答案為:.16、C【解析】分析:由,,,可得向量與平行,且,從而可得結果.詳解:∵,,,∴向量與平行,且,∴.故答案為.點睛:本題主要考查共線向量的坐標運算,平面向量的數(shù)量積公式,意在考查對基本概念的理解與應用,屬于中檔題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、【解析】函數(shù)的定義域是,由對數(shù)函數(shù)的性質(zhì)能夠求出結果【詳解】整理得解得函數(shù)的定義域為【點睛】本題考查對數(shù)函數(shù)的定義域,是基礎題.解題時要認真審題,注意對數(shù)性質(zhì)的合理運用18、(1);(2).【解析】(1)根據(jù)給定條件可得恒成立,再借助判別式列出不等式求解即得.(2)根據(jù)給定條件列出不等式,再分離參數(shù),借助函數(shù)的單調(diào)性求出函數(shù)值范圍即可推理作答.【小問1詳解】因函數(shù)的圖象恒在直線上方,即,,于是得,解得,所以實數(shù)的取值范圍是:.【小問2詳解】依題意,,,令,,令函數(shù),,,,而,即,,則有,即,于是得在上單調(diào)遞增,因此,,,即,從而有,則,所以實數(shù)的取值范圍是.19、(1)(2)當時,有一個零點;當時,且當時,有兩個零點,當時,有一個零點【解析】(1)由、都是單調(diào)遞增函數(shù)可得的單調(diào)性,利用單調(diào)性可得答案;(2)時有一個零點;當時,利用單獨單調(diào)性求得,分和討論可得答案.【小問1詳解】當時,單調(diào)遞增,當時,單調(diào)遞增,若在上單調(diào)遞增,只需,.【小問2詳解】當時,,此時,即,有一個零點;當時,,此時在上單調(diào)遞增,,若,即,此時有一個零點;若,即,此時無零點,故當時,有兩個零點,當時,有一個零點20、(1)證明見解析;(2)30°;(3)存在,.【解析】(1)首先根據(jù)已知條件并結合線面垂直的判定定理證明平面,再證明即可求解;(2)根據(jù)(1)中結論找出所求角,再結合已知條件即可求解;(3)首先假設存在,然后根據(jù)線面平行的性質(zhì)以及已知條件,看是否能求出點的具體位置,即可求解.【詳解】(1)因為,是的中點,所以,故四邊形是菱形,從而,所以沿著翻折成后,,又因為,所以平面,由題意,易知,,所以四邊形是平行四邊形,故,所以平面;(2)因為平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇財會職業(yè)學院《彈性力學與有限元》2023-2024學年第二學期期末試卷
- 天津鐵道職業(yè)技術學院《PHP動態(tài)網(wǎng)站開發(fā)》2023-2024學年第二學期期末試卷
- 深圳技術大學《透過影像看健康》2023-2024學年第一學期期末試卷
- 天津美術學院《鄉(xiāng)村幼兒園教師專業(yè)素養(yǎng)案例原理方法》2023-2024學年第二學期期末試卷
- 漯河食品職業(yè)學院《住宅及辦公空間室內(nèi)環(huán)境設計》2023-2024學年第一學期期末試卷
- 石家莊城市經(jīng)濟職業(yè)學院《漢語國際教育概論》2023-2024學年第二學期期末試卷
- 楊凌職業(yè)技術學院《食品工程原理(2)》2023-2024學年第二學期期末試卷
- 離婚協(xié)議書模板子女已成年
- 回遷房屋買賣合同集錦二零二五年
- 股東退股競業(yè)限制協(xié)議書二零二五年
- 注塑產(chǎn)品工藝流程圖
- 《公務員法》專題講座
- 軟件工程介紹
- 功能性動作篩查(FMS)
- 電子商務的區(qū)塊鏈技術應用
- 船用起重機作業(yè)安全操作規(guī)程培訓課件
- 挺膺擔當主題團課
- 煤礦安全監(jiān)控系統(tǒng)施工方案
- 中國地圖素材課件
- 動火作業(yè)專項安全施工方案
- 【新能源汽車電池回收技術方案設計3500字(論文)】
評論
0/150
提交評論