




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省成都市雙流區2025屆數學高三第一學期期末復習檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.2.已知復數,滿足,則()A.1 B. C. D.53.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件4.已知橢圓的左、右焦點分別為,,上頂點為點,延長交橢圓于點,若為等腰三角形,則橢圓的離心率A. B.C. D.5.《周易》歷來被人們視作儒家群經之首,它表現了古代中華民族對萬事萬物的深刻而又樸素的認識,是中華人文文化的基礎,它反映出中國古代的二進制計數的思想方法.我們用近代術語解釋為:把陽爻“-”當作數字“1”,把陰爻“--”當作數字“0”,則八卦所代表的數表示如下:卦名符號表示的二進制數表示的十進制數坤0000震0011坎0102兌0113依此類推,則六十四卦中的“屯”卦,符號“”表示的十進制數是()A.18 B.17 C.16 D.156.如圖所示,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋(球體)離蛋巢底面的最短距離為()A. B.C. D.7.已知等比數列的各項均為正數,設其前n項和,若(),則()A.30 B. C. D.628.學業水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業水平測試成績如圖所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人9.設為坐標原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A. B. C. D.110.在中,,,,點滿足,則等于()A.10 B.9 C.8 D.711.已知實數x,y滿足約束條件,若的最大值為2,則實數k的值為()A.1 B. C.2 D.12.設分別為的三邊的中點,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列是等比數列,,則__________.14.已知拋物線的焦點為,其準線與坐標軸交于點,過的直線與拋物線交于兩點,若,則直線的斜率________.15.設滿足約束條件且的最小值為7,則=_________.16.已知三棱錐,,是邊長為4的正三角形,,分別是、的中點,為棱上一動點(點除外),,若異面直線與所成的角為,且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,左、右焦點為,點為上任意一點,若的最大值為3,最小值為1.(1)求橢圓的方程;(2)動直線過點與交于兩點,在軸上是否存在定點,使成立,說明理由.18.(12分)已知橢圓的焦點為,,離心率為,點P為橢圓C上一動點,且的面積最大值為,O為坐標原點.(1)求橢圓C的方程;(2)設點,為橢圓C上的兩個動點,當為多少時,點O到直線MN的距離為定值.19.(12分)如圖,在四棱錐中,側面為等邊三角形,且垂直于底面,,分別是的中點.(1)證明:平面平面;(2)已知點在棱上且,求直線與平面所成角的余弦值.20.(12分)平面直角坐標系中,曲線:.直線經過點,且傾斜角為,以為極點,軸正半軸為極軸,建立極坐標系.(1)寫出曲線的極坐標方程與直線的參數方程;(2)若直線與曲線相交于,兩點,且,求實數的值.21.(12分)已知橢圓的短軸長為,離心率,其右焦點為.(1)求橢圓的方程;(2)過作夾角為的兩條直線分別交橢圓于和,求的取值范圍.22.(10分)已知函數.(1)當時,求的單調區間.(2)設直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時切線的方程.(3)已知分別在,處取得極值,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
畫出幾何體的直觀圖,利用三視圖的數據求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,
該幾何體的表面積:.故選C.【點睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關鍵.2、A【解析】
首先根據復數代數形式的除法運算求出,求出的模即可.【詳解】解:,,故選:A【點睛】本題考查了復數求模問題,考查復數的除法運算,屬于基礎題.3、B【解析】
構造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個面中根據題意恰當的選取直線為m,n即可進行判斷.【詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令AD1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點睛】本題考點有兩個:①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進行判斷;②是空間的垂直關系,一般利用長方體為載體進行分析.4、B【解析】
設,則,,因為,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設,則,在中,易得,所以,解得(負值舍去),所以橢圓的離心率.故選B.5、B【解析】
由題意可知“屯”卦符號“”表示二進制數字010001,將其轉化為十進制數即可.【詳解】由題意類推,可知六十四卦中的“屯”卦符號“”表示二進制數字010001,轉化為十進制數的計算為1×20+1×24=1.故選:B.【點睛】本題主要考查數制是轉化,新定義知識的應用等,意在考查學生的轉化能力和計算求解能力.6、D【解析】因為蛋巢的底面是邊長為的正方形,所以過四個頂點截雞蛋所得的截面圓的直徑為,又因為雞蛋的體積為,所以球的半徑為,所以球心到截面的距離,而截面到球體最低點距離為,而蛋巢的高度為,故球體到蛋巢底面的最短距離為.點睛:本題主要考查折疊問題,考查球體有關的知識.在解答過程中,如果遇到球體或者圓錐等幾何體的內接或外接幾何體的問題時,可以采用軸截面的方法來處理.也就是畫出題目通過球心和最低點的截面,然后利用弦長和勾股定理來解決.球的表面積公式和體積公式是需要熟記的.7、B【解析】
根據,分別令,結合等比數列的通項公式,得到關于首項和公比的方程組,解方程組求出首項和公式,最后利用等比數列前n項和公式進行求解即可.【詳解】設等比數列的公比為,由題意可知中:.由,分別令,可得、,由等比數列的通項公式可得:,因此.故選:B【點睛】本題考查了等比數列的通項公式和前n項和公式的應用,考查了數學運算能力.8、D【解析】
根據題意分別計算出物理等級為,化學等級為的學生人數以及物理等級為,化學等級為的學生人數,結合表格中的數據進行分析,可得出合適的選項.【詳解】根據題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變為:物理化學對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【點睛】本題考查合情推理,考查推理能力,屬于中等題.9、C【解析】試題分析:設,由題意,顯然時不符合題意,故,則,可得:,當且僅當時取等號,故選C.考點:1.拋物線的簡單幾何性質;2.均值不等式.【方法點晴】本題主要考查的是向量在解析幾何中的應用及拋物線標準方程方程,均值不等式的靈活運用,屬于中檔題.解題時一定要注意分析條件,根據條件,利用向量的運算可知,寫出直線的斜率,注意均值不等式的使用,特別是要分析等號是否成立,否則易出問題.10、D【解析】
利用已知條件,表示出向量,然后求解向量的數量積.【詳解】在中,,,,點滿足,可得則==【點睛】本題考查了向量的數量積運算,關鍵是利用基向量表示所求向量.11、B【解析】
畫出約束條件的可行域,利用目標函數的幾何意義,求出最優解,轉化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當時,x在點B處取得最大值,即,得;當時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標函數最值求解參數值,數形結合思想,分類討論是解題的關鍵,屬于中檔題.12、B【解析】
根據題意,畫出幾何圖形,根據向量加法的線性運算即可求解.【詳解】根據題意,可得幾何關系如下圖所示:,故選:B【點睛】本題考查了向量加法的線性運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據等比數列通項公式,首先求得,然后求得.【詳解】設的公比為,由,得,故.故答案為:【點睛】本小題主要考查等比數列通項公式的基本量計算,屬于基礎題.14、【解析】
求出拋物線焦點坐標,由,結合向量的坐標運算得,直線方程為,代入拋物線方程后應用韋達定理得,,從而可求得,得斜率.【詳解】由得,即聯立得解得或,∴.故答案為:.【點睛】本題考查直線與拋物線相交,考查向量的線性運算的坐標表示.直線方程與拋物線方程聯立后消元,應用韋達定理是解決直線與拋物線相交問題的常用方法.15、3【解析】
根據約束條件畫出可行域,再把目標函數轉化為,對參數a分類討論,當時顯然不滿足題意;當時,直線經過可行域中的點A時,截距最小,即z有最小值,再由最小值為7,得出結果;當時,的截距沒有最小值,即z沒有最小值;當時,的截距沒有最大值,即z沒有最小值,綜上可得出結果.【詳解】根據約束條件畫出可行域如下:由,可得出交點,由可得,當時顯然不滿足題意;當即時,由可行域可知當直線經過可行域中的點A時,截距最小,即z有最小值,即,解得或(舍);當即時,由可行域可知的截距沒有最小值,即z沒有最小值;當即時,根據可行域可知的截距沒有最大值,即z沒有最小值.綜上可知滿足條件時.故答案為:3.【點睛】本題主要考查線性規劃問題,約束條件和目標函數中都有參數,要對參數進行討論.16、【解析】
取的中點,連接,,取的中點,連接,,,直線與所成的角為,計算,,根據余弦定理計算得到答案。【詳解】取的中點,連接,,依題意可得,,所以平面,所以,因為,分別、的中點,所以,因為,所以,所以平面,故,故,故兩兩垂直。取的中點,連接,,,因為,所以直線與所成的角為,設,則,,所以,化簡得,解得,即.故答案為:.【點睛】本題考查了根據異面直線夾角求長度,意在考查學生的計算能力和空間想象能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在;詳見解析【解析】
(1)由橢圓的性質得,解得后可得,從而得橢圓方程;(2)設,當直線斜率存在時,設為,代入橢圓方程,整理后應用韋達定理得,代入=0由恒成立問題可求得.驗證斜率不存在時也適合即得.【詳解】解:(1)由題易知解得,所以橢圓方程為(2)設當直線斜率存在時,設為與橢圓方程聯立得,顯然所以因為化簡解得即所以此時存在定點滿足題意當直線斜率不存在時,顯然也滿足綜上所述,存在定點,使成立【點睛】本題考查求橢圓的標準方程,考查直線與橢圓相交問題中的定點問題,解題方法是設而不求的思想方法.設而不求思想方法是直線與圓錐曲線相交問題中常用方法,只要涉及交點坐標,一般就用此法.18、(1);(2)當=0時,點O到直線MN的距離為定值.【解析】
(1)的面積最大時,是短軸端點,由此可得,再由離心率及可得,從而得橢圓方程;(2)在直線斜率存在時,設其方程為,現橢圓方程聯立消元()后應用韋達定理得,注意,一是計算,二是計算原點到直線的距離,兩者比較可得結論.【詳解】(1)因為在橢圓上,當是短軸端點時,到軸距離最大,此時面積最大,所以,由,解得,所以橢圓方程為.(2)在時,設直線方程為,原點到此直線的距離為,即,由,得,,,所以,,,所以當時,,,為常數.若,則,,,,,綜上所述,當=0時,點O到直線MN的距離為定值.【點睛】本題考查求橢圓方程與橢圓的幾何性質,考查直線與橢圓的位置關系,考查運算求解能力.解題方法是“設而不求”法.在直線與圓錐曲線相交時常用此法通過韋達定理聯系已知式與待求式.19、(1)證明見解析;(2).【解析】
(1)由平面幾何知識可得出四邊形是平行四邊形,可得面,再由面面平行的判定可證得面面平行;(2)由(1)可知,兩兩垂直,故建立空間直角坐標系,可求得面PAB的法向量,再運用線面角的向量求法,可求得直線與平面所成角的余弦值.【詳解】(1),,又,,,而、分別是、的中點,,故面,又且,故四邊形是平行四邊形,面,又,是面內的兩條相交直線,故面面.(2)由(1)可知,兩兩垂直,故建系如圖所示,則,,,,設是平面PAB的法向量,,令,則,,直線NE與平面所成角的余弦值為.【點睛】本題考查空間的面面平行的判定,以及線面角的空間向量的求解方法,屬于中檔題.20、(Ⅰ)(t為參數);(Ⅱ)或或.【解析】
試題分析:本題主要考查極坐標方程、參數方程與直角方程的相互轉化、直線與拋物線的位置關系等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,用,化簡表達式,得到曲線的極坐標方程,由已知點和傾斜角得到直線的參數方程;第二問,直線方程與曲線方程聯立,消參,解出的值.試題解析:(1)即,.(2),符合題意考點:本題主要考查:1.極坐標方程,參數方程與直角方程的相互轉化;2.直線與拋物線的位置關系.21、(1);(2).【解析】
(1)由已知短軸長求出,離心率求出關系,結合,即可求解;(2)當直線的斜率都存在時,不妨設直線的方程為,直線與橢圓方程聯立,利用相交弦長公式求出,斜率為,求出,得到關于的表達式,根據表達式的特點用“”判別式法求出范圍,當有一斜率不存在時,另一條斜率為,根據弦長
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 私家車租賃合同模板
- 酒店花卉裝飾租賃合同
- 慶國慶迎中秋雙節58
- 1集體生活成就我 公開課一等獎創新教案 道德與法治七年級上冊
- 2025年度高級維修電工資格考試理論知識復習題庫及答案(共230題)
- 商務合作保密契約
- 美術第1課 聚聚散散教案
- 新媒體節目拍攝與剪輯技術服務合同2025
- 產品銷售與安裝合同范本
- 2025石油買賣合同 標準版模板大全
- 最新UBM檢查適應癥版課件
- 家庭是孩子的第一學校課件
- 《民航飛機自動飛行控制系統》課件合集
- 《華為干部賦能手冊》值得收藏課件
- 二次函數壓軸題(二)【圖像與取值范圍】
- 兒科學課件:化膿性腦膜炎、病毒性腦炎、腦膜炎
- 安全事故隱患舉報、獎勵制度
- 《智能系統》第7章 自主無人系統
- 樹木栽植檢查記錄表
- Q∕SY 1670.1-2014 投產方案編制導則 第1部分:原油、成品油管道
- WS377.4-2013 婦女保健基本數據集 第4部分:孕產期保健服務與高危管理
評論
0/150
提交評論