




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆貴州省畢節市納雍縣第五中學高三高考全真模擬考試數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,,若成立,則的最小值為()A.0 B.4 C. D.2.已知橢圓:的左、右焦點分別為,,點,在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.3.將一塊邊長為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.124.已知集合,,則()A. B.C.或 D.5.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是()A. B. C.16 D.326.設等差數列的前項和為,若,則()A.23 B.25 C.28 D.297.已知函數在上可導且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、8.函數的圖象大致是()A. B.C. D.9.已知函數的圖象在點處的切線方程是,則()A.2 B.3 C.-2 D.-310.執行程序框圖,則輸出的數值為()A. B. C. D.11.已知數列滿足,且成等比數列.若的前n項和為,則的最小值為()A. B. C. D.12.設集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若實數x,y滿足約束條件,則的最大值為________.14.對任意正整數,函數,若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.15.直線與拋物線交于兩點,若,則弦的中點到直線的距離等于________.16.已知函數,,若函數有3個不同的零點x1,x2,x3(x1<x2<x3),則的取值范圍是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)從拋物線C:()外一點作該拋物線的兩條切線PA、PB(切點分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點Q,點在拋物線C上,且(F為拋物線的焦點).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點Q的坐標;若不能,請說明理由.18.(12分)運輸一批海鮮,可在汽車、火車、飛機三種運輸工具中選擇,它們的速度分別為60千米/小時、120千米/小時、600千米/小時,每千米的運費分別為20元、10元、50元.這批海鮮在運輸過程中每小時的損耗為m元(),運輸的路程為S(千米).設用汽車、火車、飛機三種運輸工具運輸時各自的總費用(包括運費和損耗費)分別為(元)、(元)、(元).(1)請分別寫出、、的表達式;(2)試確定使用哪種運輸工具總費用最省.19.(12分)已知橢圓的右頂點為,點在軸上,線段與橢圓的交點在第一象限,過點的直線與橢圓相切,且直線交軸于.設過點且平行于直線的直線交軸于點.(Ⅰ)當為線段的中點時,求直線的方程;(Ⅱ)記的面積為,的面積為,求的最小值.20.(12分)設函數.(1)當時,求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實數的取值范圍.21.(12分)已知函數.其中是自然對數的底數.(1)求函數在點處的切線方程;(2)若不等式對任意的恒成立,求實數的取值范圍.22.(10分)平面直角坐標系中,曲線的參數方程為(為參數),以原點為極點,軸的非負半軸為極軸,取相同的單位長度建立極坐標系,曲線的極坐標方程為,直線的極坐標方程為,點.(1)求曲線的極坐標方程與直線的直角坐標方程;(2)若直線與曲線交于點,曲線與曲線交于點,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
令,進而求得,再轉化為函數的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數在研究函數最值中的應用,考查了轉化的數學思想,恰當的用一個未知數來表示和是本題的關鍵,屬于中檔題.2、C【解析】
根據可得四邊形為矩形,設,,根據橢圓的定義以及勾股定理可得,再分析的取值范圍,進而求得再求離心率的范圍即可.【詳解】設,,由,,知,因為,在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C【點睛】本題主要考查了橢圓的定義運用以及構造齊次式求橢圓的離心率的問題,屬于中檔題.3、D【解析】
推導出,且,,,設中點為,則平面,由此能表示出該容器的體積,從而求出參數的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設中點為,則平面,∴,∴,解得.故選:D【點睛】本題考查三視圖和錐體的體積計算公式的應用,屬于中檔題.4、D【解析】
首先求出集合,再根據補集的定義計算可得;【詳解】解:∵,解得∴,∴.故選:D【點睛】本題考查補集的概念及運算,一元二次不等式的解法,屬于基礎題.5、A【解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.6、D【解析】
由可求,再求公差,再求解即可.【詳解】解:是等差數列,又,公差為,,故選:D【點睛】考查等差數列的有關性質、運算求解能力和推理論證能力,是基礎題.7、A【解析】
設,利用導數和題設條件,得到,得出函數在R上單調遞增,得到,進而變形即可求解.【詳解】由題意,設,則,又由,所以,即函數在R上單調遞增,則,即,變形可得.故選:A.【點睛】本題主要考查了利用導數研究函數的單調性及其應用,以及利用單調性比較大小,其中解答中根據題意合理構造新函數,利用新函數的單調性求解是解答的關鍵,著重考查了構造思想,以及推理與計算能力,屬于中檔試題.8、B【解析】
根據函數表達式,把分母設為新函數,首先計算函數定義域,然后求導,根據導函數的正負判斷函數單調性,對應函數圖像得到答案.【詳解】設,,則的定義域為.,當,,單增,當,,單減,則.則在上單增,上單減,.選B.【點睛】本題考查了函數圖像的判斷,用到了換元的思想,簡化了運算,同學們還可以用特殊值法等方法進行判斷.9、B【解析】
根據求出再根據也在直線上,求出b的值,即得解.【詳解】因為,所以所以,又也在直線上,所以,解得所以.故選:B【點睛】本題主要考查導數的幾何意義,意在考查學生對這些知識的理解掌握水平.10、C【解析】
由題知:該程序框圖是利用循環結構計算并輸出變量的值,計算程序框圖的運行結果即可得到答案.【詳解】,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,不滿足條件,輸出.故選:C【點睛】本題主要考查程序框圖中的循環結構,屬于簡單題.11、D【解析】
利用等比中項性質可得等差數列的首項,進而求得,再利用二次函數的性質,可得當或時,取到最小值.【詳解】根據題意,可知為等差數列,公差,由成等比數列,可得,∴,解得.∴.根據單調性,可知當或時,取到最小值,最小值為.故選:D.【點睛】本題考查等差數列通項公式、等比中項性質、等差數列前項和的最值,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當或時同時取到最值.12、C【解析】
解對數不等式求得集合,由此求得兩個集合的交集.【詳解】由,解得,故.依題意,所以.故選:C【點睛】本小題主要考查對數不等式的解法,考查集合交集的概念和運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
作出可行域,可得當直線經過點時,取得最大值,求解即可.【詳解】作出可行域(如下圖陰影部分),聯立,可求得點,當直線經過點時,.故答案為:3.【點睛】本題考查線性規劃,考查數形結合的數學思想,屬于基礎題.14、【解析】
將代入求解即可;當為奇數時,,則轉化為,設,由單調性求得的最小值;同理,當為偶數時,,則轉化為,設,利用導函數求得的最小值,進而比較得到的最大值.【詳解】由題,,解得.當為奇數時,,由,得,而函數為單調遞增函數,所以,所以;當為偶數時,,由,得,設,,單調遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點睛】本題考查利用導函數求最值,考查分類討論思想和轉化思想.15、【解析】
由已知可知直線過拋物線的焦點,求出弦的中點到拋物線準線的距離,進一步得到弦的中點到直線的距離.【詳解】解:如圖,直線過定點,,而拋物線的焦點為,,弦的中點到準線的距離為,則弦的中點到直線的距離等于.故答案為:.【點睛】本題考查拋物線的簡單性質,考查直線與拋物線位置關系的應用,體現了數學轉化思想方法,屬于中檔題.16、【解析】
先根據題意,求出的解得或,然后求出f(x)的導函數,求其單調性以及最值,在根據題意求出函數有3個不同的零點x1,x2,x3(x1<x2<x3),分情況討論求出的取值范圍.【詳解】解:令t=f(x),函數有3個不同的零點,即+m=0有兩個不同的解,解之得即或因為的導函數,令,解得x>e,,解得0<x<e,可得f(x)在(0,e)遞增,在遞減;f(x)的最大值為,且且f(1)=0;要使函數有3個不同的零點,(1)有兩個不同的解,此時有一個解;(2)有兩個不同的解,此時有一個解當有兩個不同的解,此時有一個解,此時,不符合題意;或是不符合題意;所以只能是解得,此時=-m,此時有兩個不同的解,此時有一個解此時,不符合題意;或是不符合題意;所以只能是解得,此時=,綜上:的取值范圍是故答案為【點睛】本題主要考查了函數與導函數的綜合,考查到了函數的零點,導函數的應用,以及數形結合的思想、分類討論的思想,屬于綜合性極強的題目,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)①證明見解析;②能,.【解析】
(1)根據拋物線的定義,求出,即可求拋物線C的方程;(2)①設,,寫出切線的方程,解方程組求出點的坐標.設點,直線AB的方程,代入拋物線方程,利用韋達定理得到點的坐標,寫出點的坐標,,可得線段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點Q的坐標.【詳解】(1)因為,所以,即拋物線C的方程是.(2)①證明:由得,.設,,則直線PA的方程為(ⅰ),則直線PB的方程為(ⅱ),由(ⅰ)和(ⅱ)解得:,,所以.設點,則直線AB的方程為.由得,則,,所以,所以線段PQ被x軸平分,即被線段CD平分.在①中,令解得,所以,同理得,所以線段CD的中點坐標為,即,又因為直線PQ的方程為,所以線段CD的中點在直線PQ上,即線段CD被線段PQ平分.因此,四邊形是平行四邊形.②由①知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當點Q為,即為拋物線的焦點時,四邊形是矩形.【點睛】本題考查拋物線的方程,考查直線和拋物線的位置關系,屬于難題.18、(1),,.(2)當時,此時選擇火車運輸費最省;當時,此時選擇飛機運輸費用最省;當時,此時選擇火車或飛機運輸費用最省.【解析】
(1)將運費和損耗費相加得出總費用的表達式.(2)作差比較、的大小關系得出結論.【詳解】(1),,.(2),故,恒成立,故只需比較與的大小關系即可,令,故當,即時,,即,此時選擇火車運輸費最省,當,即時,,即,此時選擇飛機運輸費用最省.當,即時,,,此時選擇火車或飛機運輸費用最省.【點睛】本題考查了常見函數的模型,考查了分類討論的思想,屬于基礎題.19、(Ⅰ)直線的方程為(Ⅱ)【解析】
(1)設點,利用中點坐標公式表示點B,并代入橢圓方程解得,從而求出直線的方程;(2)設直線的方程為:,表示點,然后聯立方程,利用相切得出,然后求出切點,再設出設直線的方程,求出點,利用兩點坐標,求出直線的方程,從而求出,最后利用以上已求點的坐標表示面積,根據基本不等式求最值即可.【詳解】解:(Ⅰ)由橢圓,可得:由題意:設點,當為的中點時,可得:代入橢圓方程,可得:所以:所以.故直線的方程為.(Ⅱ)由題意,直線的斜率存在且不為0,故設直線的方程為:令,得:,所以:.聯立:,消,整理得:.因為直線與橢圓相切,所以.即.設,則,,所以.又直線直線,所以設直線的方程為:.令,得,所以:.因為,所以直線的方程為:.令,得,所以:.所以.又因為..所以(當且僅當,即時等號成立)所以.【點睛】本小題主要考查直線和橢圓的位置關系,考查直線方程以及求橢圓中的最值問題,最值問題一般是把目標式求出,結合目標式特點選用合適的方法求解,側重考查數學運算的核心素養,本題利用了基本不等式求最小值的方法,運算量較大,屬于難題.20、(Ⅰ).(Ⅱ).【解析】
(Ⅰ)時,根據絕對值不等式的定義去掉絕對值,求不等式的解集即可;(Ⅱ)不等式的解集為,等價于,求出在的最小值即可.【詳解】(Ⅰ)當時,時,不等式化為,解得,即時,不等式化為,不等式恒成立,即時,不等式化為,解得,即綜上所述,不等式的解集為(Ⅱ)不等式的解集為對任意恒成立當時,取得最小值為實數的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 代收款委托聲明3篇
- 工程合同價款結算方法3篇
- 城市公共照明路燈施工協議3篇
- 房產租賃逾期付款的投資風險3篇
- 合伙經營砂石料協議書范本版3篇
- 付費搬運服務合同3篇
- 水泥制品生產安全規程考核試卷
- 森林生態學與資源管理考核試卷
- 電容器在變頻調速中的關鍵作用考核試卷
- 農藥殘留監控網絡建設考核試卷
- 運動與身體教育智慧樹知到期末考試答案章節答案2024年溫州大學
- 電梯維保服務考核標準及評分辦法
- (正式版)JBT 3300-2024 平衡重式叉車 整機試驗方法
- 2024全新校醫合作協議(重點條款版)
- 小腦梗死的護理查房
- 水產養殖公司合伙人股權分配協議
- 特殊教育導論 課件 第一章 特殊教育的基本概念
- 急救醫療資源整合優化研究
- 牛津譯林7A-Unit3、4單元復習
- 專題四“挺膺擔當”主題團課
- 國家義務教育質量監測初中美術試題
評論
0/150
提交評論