2025屆廣西梧州市高三數學第一學期期末質量檢測模擬試題含解析_第1頁
2025屆廣西梧州市高三數學第一學期期末質量檢測模擬試題含解析_第2頁
2025屆廣西梧州市高三數學第一學期期末質量檢測模擬試題含解析_第3頁
2025屆廣西梧州市高三數學第一學期期末質量檢測模擬試題含解析_第4頁
2025屆廣西梧州市高三數學第一學期期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆廣西梧州市高三數學第一學期期末質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數、滿足約束條件,則的最大值為()A. B. C. D.2.已知正四面體的內切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.273.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于4.若不相等的非零實數,,成等差數列,且,,成等比數列,則()A. B. C.2 D.5.在正方體中,E是棱的中點,F是側面內的動點,且與平面的垂線垂直,如圖所示,下列說法不正確的是()A.點F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值6.若,則()A. B. C. D.7.設復數滿足為虛數單位),則()A. B. C. D.8.設為等差數列的前項和,若,則A. B.C. D.9.設,則A. B. C. D.10.已知向量,,若,則與夾角的余弦值為()A. B. C. D.11.是定義在上的增函數,且滿足:的導函數存在,且,則下列不等式成立的是()A. B.C. D.12.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點,若,則λ+μ的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如果復數滿足,那么______(為虛數單位).14.已知函數,若在定義域內恒有,則實數的取值范圍是__________.15.函數的定義域是____________.(寫成區間的形式)16.已知為橢圓內一定點,經過引一條弦,使此弦被點平分,則此弦所在的直線方程為________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,它的導函數為.(1)當時,求的零點;(2)當時,證明:.18.(12分)如圖,設A是由個實數組成的n行n列的數表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實數,且aij{1,-1}.記S(n,n)為所有這樣的數表構成的集合.對于,記ri(A)為A的第i行各數之積,cj(A)為A的第j列各數之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請寫出一個AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說明理由;(Ⅲ)給定正整數n,對于所有的AS(n,n),求l(A)的取值集合.19.(12分)記拋物線的焦點為,點在拋物線上,且直線的斜率為1,當直線過點時,.(1)求拋物線的方程;(2)若,直線與交于點,,求直線的斜率.20.(12分)在中,內角的邊長分別為,且.(1)若,,求的值;(2)若,且的面積,求和的值.21.(12分)某調查機構為了了解某產品年產量x(噸)對價格y(千克/噸)和利潤z的影響,對近五年該產品的年產量和價格統計如下表:x12345y17.016.515.513.812.2(1)求y關于x的線性回歸方程;(2)若每噸該產品的成本為12千元,假設該產品可全部賣出,預測當年產量為多少時,年利潤w取到最大值?參考公式:22.(10分)[選修4-5:不等式選講]:已知函數.(1)當時,求不等式的解集;(2)設,,且的最小值為.若,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

作出不等式組表示的平面區域,作出目標函數對應的直線,結合圖象知當直線過點時,取得最大值.【詳解】解:作出約束條件表示的可行域是以為頂點的三角形及其內部,如下圖表示:當目標函數經過點時,取得最大值,最大值為.故選:C.【點睛】本題主要考查線性規劃等基礎知識;考查運算求解能力,數形結合思想,應用意識,屬于中檔題.2、D【解析】

設正四面體的棱長為,取的中點為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內切球的半徑,在中,根據勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設正四面體的棱長為,取的中點為,連接,作正四面體的高為,則,,,設內切球的半徑為,內切球的球心為,則,解得:;設外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點睛】本題主要考查了多面體的內切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎題.3、C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應選答案C.4、A【解析】

由題意,可得,,消去得,可得,繼而得到,代入即得解【詳解】由,,成等差數列,所以,又,,成等比數列,所以,消去得,所以,解得或,因為,,是不相等的非零實數,所以,此時,所以.故選:A【點睛】本題考查了等差等比數列的綜合應用,考查了學生概念理解,轉化劃歸,數學運算的能力,屬于中檔題.5、C【解析】

分別根據線面平行的性質定理以及異面直線的定義,體積公式分別進行判斷.【詳解】對于,設平面與直線交于點,連接、,則為的中點分別取、的中點、,連接、、,,平面,平面,平面.同理可得平面,、是平面內的相交直線平面平面,由此結合平面,可得直線平面,即點是線段上上的動點.正確.對于,平面平面,和平面相交,與是異面直線,正確.對于,由知,平面平面,與不可能平行,錯誤.對于,因為,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點睛】本題考查了正方形的性質、空間位置關系、空間角、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.6、D【解析】

直接利用二倍角余弦公式與弦化切即可得到結果.【詳解】∵,∴,故選D【點睛】本題考查的知識要點:三角函數關系式的恒等變變換,同角三角函數關系式的應用,主要考查學生的運算能力和轉化能力,屬于基礎題型.7、B【解析】

易得,分子分母同乘以分母的共軛復數即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復數的乘法、除法運算,考查學生的基本計算能力,是一道容易題.8、C【解析】

根據等差數列的性質可得,即,所以,故選C.9、C【解析】分析:利用復數的除法運算法則:分子、分母同乘以分母的共軛復數,化簡復數,然后求解復數的模.詳解:,則,故選c.點睛:復數是高考中的必考知識,主要考查復數的概念及復數的運算.要注意對實部、虛部的理解,掌握純虛數、共軛復數這些重要概念,復數的運算主要考查除法運算,通過分母實數化轉化為復數的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失分.10、B【解析】

直接利用向量的坐標運算得到向量的坐標,利用求得參數m,再用計算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點睛】本題考查向量的坐標運算、向量數量積的應用,考查運算求解能力以及化歸與轉化思想.11、D【解析】

根據是定義在上的增函數及有意義可得,構建新函數,利用導數可得為上的增函數,從而可得正確的選項.【詳解】因為是定義在上的增函數,故.又有意義,故,故,所以.令,則,故在上為增函數,所以即,整理得到.故選:D.【點睛】本題考查導數在函數單調性中的應用,一般地,數的大小比較,可根據數的特點和題設中給出的原函數與導數的關系構建新函數,本題屬于中檔題.12、B【解析】

建立平面直角坐標系,用坐標表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標系,則D(0,0).不妨設AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點睛】本題主要考查了由平面向量線性運算的結果求參數,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

把已知等式變形,再由復數代數形式的乘除運算化簡,然后利用復數模的計算公式求解.【詳解】∵,∴,∴,故答案為:.【點睛】本小題主要考查復數除法運算,考查復數的模的求法,屬于基礎題.14、【解析】

根據指數函數與對數函數圖象可將原題轉化為恒成立問題,湊而可知的圖象在過原點且與兩函數相切的兩條切線之間;利用過一點的曲線切線的求法可求得兩切線斜率,結合分母不為零的條件可最終確定的取值范圍.【詳解】由指數函數與對數函數圖象可知:,恒成立可轉化為恒成立,即恒成立,,即是夾在函數與的圖象之間,的圖象在過原點且與兩函數相切的兩條切線之間.設過原點且與相切的直線與函數相切于點,則切線斜率,解得:;設過原點且與相切的直線與函數相切于點,則切線斜率,解得:;當時,,又,滿足題意;綜上所述:實數的取值范圍為.【點睛】本題考查恒成立問題的求解,重點考查了導數幾何意義應用中的過一點的曲線切線的求解方法;關鍵是能夠結合指數函數和對數函數圖象將問題轉化為切線斜率的求解問題;易錯點是忽略分母不為零的限制,忽略對于臨界值能否取得的討論.15、【解析】

要使函數有意義,需滿足,即,解得,故函數的定義域是.16、【解析】

設弦所在的直線與橢圓相交于、兩點,利用點差法可求得直線的斜率,進而可求得直線的點斜式方程,化為一般式即可.【詳解】設弦所在的直線與橢圓相交于、兩點,由于點為弦的中點,則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.【點睛】本題考查利用弦的中點求弦所在直線的方程,一般利用點差法,也可以利用韋達定理設而不求法來解答,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)證明見解析.【解析】

當時,求函數的導數,判斷導函數的單調性,計算即為導函數的零點;

當時,分類討論x的范圍,可令新函數,計算新函數的最值可證明.【詳解】(1)的定義域為當時,,,易知為上的增函數,又,所以是的唯一零點;(2)證明:當時,,①若,則,所以成立,②若,設,則,令,則,因為,所以,從而在上單調遞增,所以,即,在上單調遞增;所以,即,故.【點睛】本題主要考查導數法研究函數的單調性,單調性,零點的求法.注意分類討論和構造新函數求函數的最值的應用.18、(Ⅰ)答案見解析;(Ⅱ)不存在,理由見解析;(Ⅲ)【解析】

(Ⅰ)可取第一行都為-1,其余的都取1,即滿足題意;(Ⅱ)用反證法證明:假設存在,得出矛盾,從而證明結論;(Ⅲ)通過分析正確得出l(A)的表達式,以及從A0如何得到A1,A2……,以此類推可得到Ak.【詳解】(Ⅰ)答案不唯一,如圖所示數表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因為,,所以,,...,,,,...,這18個數中有9個1,9個-1.令.一方面,由于這18個數中有9個1,9個-1,從而①,另一方面,表示數表中所有元素之積(記這81個實數之積為m);也表示m,從而②,①,②相矛盾,從而不存在,使得.(Ⅲ)記這個實數之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有③,注意到,,下面考慮,,...,,,,...,中-1的個數,由③知,上述2n個實數中,-1的個數一定為偶數,該偶數記為,則1的個數為2n-2k,所以,對數表,顯然.將數表中的由1變為-1,得到數表,顯然,將數表中的由1變為-1,得到數表,顯然,依此類推,將數表中的由1變為-1,得到數表,即數表滿足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合為.【點睛】本題為數列的創新應用題,考查數學分析與思考能力及推理求解能力,解題關鍵是讀懂題意,根據引入的概念與性質進行推理求解,屬于較難題.19、(1)(2)0【解析】

(1)根據題意,設直線,與聯立,得,再由弦長公式,求解.(2)設,根據直線的斜率為1,則,得到,再由,所以線段中點的縱坐標為,然后直線的方程與直線的方程聯立解得交點H的縱坐標,說明直線軸,直線的斜率為0.【詳解】(1)依題意,,則直線,聯立得;設,則,解得,故拋物線的方程為.(2),因為直線的斜率為1,則,所以,因為,所以線段中點的縱坐標為.直線的方程為,即①直線的方程為,即②聯立①②解得即點的縱坐標為,即直線軸,故直線的斜率為0.如果直線的斜率不存在,結論也顯然成立,綜上所述,直線的斜率為0.【點睛】本題考查拋物線的方程、直線與拋物線的位置關系,還考查推理論證能力以及化歸與轉化思想,屬于中檔題.20、(1);(2).【解析】

(1)先由余弦定理求得,再由正弦定理計算即可得到所求值;

(2)運用二倍角的余弦公式和兩角和的正弦公式,化簡可得sinA+sinB=5sinC,運用正弦定理和三角形的面積公式可得a,b的方程組,解方程即可得到所求值.【詳解】解:(1)由余弦定理由正弦定理得(2)由已知得:所以------①又所以------②由①②解得【點睛】本題考查正弦定理、余弦定理和面積公式的運用,以及三角函數的恒等變換,考查化簡整理的運算能力,屬于中檔題.21、(1)(2)當時,年利潤最大.【解析】

(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論