上海市普通高中2025屆高二數學第一學期期末達標檢測試題含解析_第1頁
上海市普通高中2025屆高二數學第一學期期末達標檢測試題含解析_第2頁
上海市普通高中2025屆高二數學第一學期期末達標檢測試題含解析_第3頁
上海市普通高中2025屆高二數學第一學期期末達標檢測試題含解析_第4頁
上海市普通高中2025屆高二數學第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市普通高中2025屆高二數學第一學期期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,若,,則實數的取值范圍是A. B.C. D.2.若直線l與橢圓交于點A、B,線段的中點為,則直線l的方程為()A. B.C. D.3.已知,則的最小值是()A.3 B.8C.12 D.204.某公司要建造一個長方體狀的無蓋箱子,其容積為48m3,高為3m,如果箱底每1m2的造價為15元,箱壁每1m2造價為12元,則箱子的最低總造價為()A.72元 B.300元C.512元 D.816元5.如圖,在四面體中,,,,點為的中點,,則()A. B.C. D.6.若兩定點A,B的距離為3,動點M滿足,則M點的軌跡圍成區域的面積為()A. B.C. D.7.已知函數,則曲線在點處的切線與坐標軸圍成的三角形的面積是()A B.C. D.8.如圖,、分別為橢圓的左、右焦點,為橢圓上的點,是線段上靠近的三等分點,為正三角形,則橢圓的離心率為()A. B.C. D.9.已知,,,則下列判斷正確的是()A. B.C. D.10.函數在上的最大值是A. B.C. D.11.在等比數列中,若,,則()A. B.C. D.12.將點的極坐標化成直角坐標是(

)A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,,三點共線,則m的值為___________.14.已知數列{}的前n項和為,則該數列的通項公式__________.15.如果點在運動過程中,總滿足關系式,記滿足此條件的點M的軌跡為C,直線與C交于D,E,已知,則周長的最大值為______16.已知數列滿足,,則_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數列是公比為q的等比數列,其前n項和為(1)若,,求數列的前n項和;(2)若,,成等差數列,求q的值并證明:存在互不相同的正整數m,n,p,使得,,成等差數列;(3)若存在正整數,使得數列,,…,在刪去以后按原來的順序所得到的數列是等差數列,求所有數對所構成的集合,18.(12分)設曲線在點(1,0)處的切線方程為.(1)求a,b的值;(2)求證:;(3)當,求a的取值范圍.19.(12分)紅鈴蟲是棉花的主要害蟲之一,也侵害木棉、錦葵等植物.為了防治蟲害,從根源上抑制害蟲數量.現研究紅鈴蟲的產卵數和溫度的關系,收集到7組溫度和產卵數的觀測數據于表Ⅰ中.根據繪制的散點圖決定從回歸模型①與回歸模型②中選擇一個來進行擬合表Ⅰ溫度x/℃20222527293135產卵數y/個711212465114325(1)請借助表Ⅱ中的數據,求出回歸模型①的方程:表Ⅱ(注:表中)18956725.271627810611.06304041.86825.09(2)類似的,可以得到回歸模型②的方程為,試求兩種模型下溫度為時的殘差;(3)若求得回歸模型①的相關指數,回歸模型②的相關指數,請結合(2)說明哪個模型的擬合效果更好參考數據:.附:回歸方程中,相關指數.20.(12分)已知(1)討論函數的單調性;(2)若函數在上有1個零點,求實數a的取值范圍21.(12分)已知橢圓過點,離心率.(1)求橢圓的方程;(2)設直線與橢圓相交于A、B兩點,求.22.(10分)已知橢圓左,右頂點分別是,,且,是橢圓上異于,的不同的兩點(1)若,證明:直線必過坐標原點;(2)設點是以為直徑的圓和以為直徑的圓的另一個交點,記線段的中點為,若,求動點的軌跡方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】函數,若,,可得,解得或,則實數的取值范圍是,故選A.2、A【解析】用點差法即可獲解【詳解】設.則兩式相減得即因為,線段AB的中點為,所以所以所以直線的方程為,即故選:A3、A【解析】利用基本不等式進行求解即可.【詳解】因為,所以,當且僅當時取等號,即當時取等號,故選:A4、D【解析】設這個箱子的箱底的長為xm,則寬為m,設箱子總造價為f(x)元,則f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低總造價【詳解】設這個箱子的箱底的長為xm,則寬為m,設箱子總造價為f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,當且僅當x,即x=4時,f(x)取最小值816元故選:D5、B【解析】利用插點的方法,將歸結到題目中基向量中去,注意中線向量的運用.【詳解】.故選:B.6、D【解析】以點A為坐標原點,射線AB為x軸的非負半軸建立直角坐標系,求出點M的軌跡方程即可計算得解.【詳解】以點A為坐標原點,射線AB為x軸的非負半軸建立直角坐標系,如圖,設點,則,化簡并整理得:,于是得點M的軌跡是以點為圓心,2為半徑的圓,其面積為,所以M點的軌跡圍成區域的面積為.故選:D7、B【解析】根據導數的幾何意義,求出切線方程,求出切線和橫截距a和縱截距b,面積為【詳解】由題意可得,所以,則所求切線方程為令,得;令,得故所求三角形的面積為故選:B8、D【解析】根據橢圓定義及正三角形的性質可得到\,再在中運用余弦定理得到、的關系,進而求得橢圓的離心率【詳解】由橢圓的定義知,,則,因為正三角形,所以,在中,由余弦定理得,則,,故選:D【點睛】本題考查橢圓的離心率的求解,考查考生的邏輯推理能力及運算求解能力,屬于中等題.9、A【解析】根據對數函數的單調性,以及根式的運算,確定的大小關系,則問題得解.【詳解】因為,即;又,故.故選:A.10、D【解析】求出函數的導數,解關于導函數的不等式,求出函數的單調區間即可,結合函數的單調性求出的最大值即可【詳解】函數的導數令可得,可得上單調遞增,在單調遞減,函數在上的最大值是故選D【點睛】本題考查了函數的單調性、最值問題,是一道中檔題11、D【解析】由等比數列的性質得,化簡,代入數值求解.【詳解】因為數列是等比數列,所以,由題意,所以.故選:D12、A【解析】本題考查極坐標與直角坐標互化由點M的極坐標,知極坐標與直角坐標的關系為,所以的直角坐標為即故正確答案為A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據三點共線與斜率的關系即可得出【詳解】由,,三點共線,可知所在的直線與所在的直線平行,又,由已知可得,解得故答案為:14、2n+1【解析】由計算,再計算可得結論【詳解】由題意時,,又適合上式,所以故答案為:【點睛】本題考查由求通項公式,解題根據是,但要注意此式不含,15、8【解析】根據橢圓定義判斷出軌跡,分析條件結合橢圓定義可知當直線x=m過右焦點時,三角形ADE周長最大.【詳解】,到定點,的距離和等于常數,點軌跡C為橢圓,且故其方程為,則為左焦點,因為直線與C交于D,E,則,不妨設D在軸上方,E在軸下方,設橢圓右焦點為A',連接DA',EA',因為DA'+EA'≥DE,所以DA+EA+DA'+EA'≥DA+EA+DE,即4a≥DA+EA+DE,所以△ADE的周長,當時取得最大值8,故答案為:816、【解析】由題設可得,應用累加法有,結合已知即可求.【詳解】由題設,,所以,又,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2),證明見解析.(3)不存在,【解析】(1)數列為首項為公差為的等差數列,利用等差數列的求和公式即可得出結果;(2),,成等差數列,則+=2,根據等比數列求和公式計算可解得,進而計算可得,即可判斷結果;(3)由題意列出,,…,,,,,,…,在刪去以后,按原來的順序所得到的數列是等差數列,則,解方程組可得無解,則所有數對所構成的集合為.【小問1詳解】,,數列是公比為q的等比數列,,數列為,數列為首項為公差為的等差數列,數列的前n項和.【小問2詳解】,,成等差數列,+=2,當時,+=,2,不符題意舍去,當時,.,即,,,(舍)或即,存在互不相同的正整數,使得,,成等差數列,,,.【小問3詳解】由題意列出,,…,,,,,,…,在刪去以后,按原來的順序所得到的數列是等差數列,則,,即,解得:方程組無解.即符合條件的不存在,所有數對所構成的集合為.18、(1)(2)證明見解析(3)【解析】(1)求導,根據導數的幾何意義,令x=1處的切線的斜率等1,結合,即可求得a和b的值;(2)利用(1)的結論,構造函數,求求導數,判斷單調性,求出最小值即可證明;(3)根據條件構造函數,求出其導數,分類討論導數的值的情況,根據單調性,判斷函數的最小值情況,即可求得答案.【小問1詳解】由題意知:,因為曲線在點(1,0)處的切線方程為,故,即;【小問2詳解】證明:由(1)知:,令,則,當時,,單調遞減,當時,,單調遞增,所以當時,取得極小值,也即最小值,最小值為,故,即成立;【小問3詳解】當,即,(),設,(),則,當時,由得,此時,此時在時單調遞增,,適合題意;當時,,此時在時單調遞增,,適合題意;當時,,此時,此時在時單調遞增,,適合題意;當時,,此時在內,,在內,,故,顯然時,,不滿足當恒成立,綜上述:.19、(1)(或)(2)模型①:1.54;模型②:65.54(3)模型①【解析】(1)利用兩邊取自然對數,利用表中的數據即可求解;(2)分別計算模型①、②在時殘差;(3)根據相關指數的大小判斷摸型①、②的殘差平方和,再得出那個模型的擬合效果更好.【小問1詳解】由,得,令,得,由表Ⅱ數據可得,,,所以,所以回歸方程為(或).【小問2詳解】由題意可知,模型①在時殘差為,模型②在時殘差為.【小問3詳解】因為,即模型①的相關指數大于模型②的相關指數,由相關指數公式知,模型①的殘差平方和小于模型②的殘差平方和,因此模型①得到的數據更接近真實數據,所以模型①的擬合效果更好.20、(1)答案見解析;(2).【解析】(1)對函數求導,按a值的正負分析討論導數值的符號計算作答.(2)求出函數的解析式并求導,再按在值的正負分段討論推理作答.【小問1詳解】函數的定義域為R,求導得:當時,當時,,當時,,則在上單調遞減,在上單調遞增,當時,令,得,若,即時,,則有在R上單調遞增,若,即時,當或時,,當時,,則有在,上都單調遞增,在上單調遞減,若,即時,當或時,,當時,,則有在,上都單調遞增,在上單調遞減,所以,當時,上單調遞減,在上單調遞增,當時,在,上都單調遞增,在上單調遞減,當時,在R上單調遞增,當時,在,上都單調遞增,在上單調遞減.【小問2詳解】依題意,,,當時,,當時,,,則函數在上單調遞增,有,無零點,當時,,,函數在上單調遞減,,無零點,當時,,使得,而在上單調遞增,當時,,當時,,因此,在上單調遞增,在上單調遞減,又,若,即時,無零點,若,即時,有一個零點,綜上可知,當時,在有1個零點,所以實數a的取值范圍.【點睛】思路點睛:涉及含參的函數零點問題,利用導數分類討論,研究函數的單調性、最值等,結合零點存在性定理,借助數形結合思想分析解決問題.21、(1);(2).【解析】(1)根據題意得,,再結合即可求得答案.(2)設,,直接聯立方程得,再結合韋達定理,利用弦長公式和點到線的距離公式得,點M到直線的距離,進而可得.【詳解】解:(1)由題意得,,結合,解得所以橢圓的方程為:.(2)由得即,經驗證.設,.所以,,故因為點M到直線的距離,所以.【點睛】本題考查直線與橢圓位置關系,橢圓的方程,弦長公式等,考查運算能力,是基礎題.22、(1)證明見解析;(2).【解析】(1)設,首先證明,從而可得到,即得到;進而可得到四邊形為平行四邊形;再根據為的中點,即可證明直線必過坐標原點(2)設出直線的方程,與橢圓方程聯立,消元,寫韋達;根據條件可求出直線MN過定點,從而可得到過定點,進而可得到點在以為直徑的圓上運動

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論