浙江省湖州市天略外國語學校2025屆高二上數(shù)學期末統(tǒng)考試題含解析_第1頁
浙江省湖州市天略外國語學校2025屆高二上數(shù)學期末統(tǒng)考試題含解析_第2頁
浙江省湖州市天略外國語學校2025屆高二上數(shù)學期末統(tǒng)考試題含解析_第3頁
浙江省湖州市天略外國語學校2025屆高二上數(shù)學期末統(tǒng)考試題含解析_第4頁
浙江省湖州市天略外國語學校2025屆高二上數(shù)學期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

浙江省湖州市天略外國語學校2025屆高二上數(shù)學期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.設是數(shù)列的前項和,已知,則數(shù)列()A.是等比數(shù)列,但不是等差數(shù)列 B.是等差數(shù)列,但不是等比數(shù)列C.是等比數(shù)列,也是等差數(shù)列 D.既不是等差數(shù)列,也不是等比數(shù)列3.已知是拋物線上的一點,是拋物線的焦點,若以為始邊,為終邊的角,則等于()A. B.C. D.4.過拋物線的焦點的直線交拋物線于兩點,點是原點,若;則的面積為()A. B.C. D.5.在四面體中,,,,且,,則等于()A. B.C. D.6.“”是“直線:與直線:平行”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.設、是橢圓:的左、右焦點,為直線上一點,是底角為的等腰三角形,則的離心率為A. B.C. D.8.已知圓,圓,M,N分別是圓上的動點,P為x軸上的動點,則以的最小值為()A B.C. D.9.若函數(shù)既有極大值又有極小值,則實數(shù)a的取值范圍是()A. B.C. D.10.下列曲線中,與雙曲線有相同漸近線是()A. B.C. D.11.已知直線和互相平行,則實數(shù)的取值為()A或3 B.C. D.1或12.南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,而是逐項差數(shù)之差或者高次差相等.對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術”.現(xiàn)有一個高階等差數(shù)列,其前6項分別為1,5,11,21,37,61,則該數(shù)列的第7項為()A.95 B.131C.139 D.141二、填空題:本題共4小題,每小題5分,共20分。13.已知是雙曲線的左、右焦點,點M是雙曲線E上的任意一點(不是頂點),過作角平分線的垂線,垂足為N,O是坐標原點.若,則雙曲線E的漸近線方程為__________14.已知函數(shù),則______15.若圓被直線平分,則值為__________16.已知橢圓的左、右焦點分別為,,上頂點為A,直線與橢圓C的另一個交點為B,則的面積為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在公差不為0的等差數(shù)列中,,且構成等比數(shù)列的前三項(1)求數(shù)列,的通項公式;(2)設數(shù)列___________,求數(shù)列的前項和請在①;②;③這三個條件中選擇一個,補充在上面的橫線上,并完成解答18.(12分)已知橢圓M:的離心率為,左頂點A到左焦點F的距離為1,橢圓M上一點B位于第一象限,點B與點C關于原點對稱,直線CF與橢圓M的另一交點為D(1)求橢圓M的標準方程;(2)設直線AD的斜率為,直線AB的斜率為.求證:為定值19.(12分)某高校在今年的自主招生考試成績中隨機抽取100名考生的筆試成績,分為5組制出頻率分布表如圖所示.組號分組頻數(shù)頻率150052350.35330b4cd5100.1(1)求b,c,d的值;(2)該校決定在成績較好的3、4、5組用分層抽樣抽取6名學生進行面試,則每組應各抽多少名學生?(3)在(2)的前提下,從抽到6名學生中再隨機抽取2名被甲考官面試,求這2名學生來自同一組的概率.20.(12分)已知函數(shù).(1)當時,求函數(shù)的極值;(2)若對,恒成立,求的取值范圍.21.(12分)兩個頂點、的坐標分別是、,邊、所在直線的斜率之積等于,頂點的軌跡記為.(1)求頂點的軌跡的方程;(2)若過點作直線與軌跡相交于、兩點,點恰為弦中點,求直線的方程;(3)已知點為軌跡的下頂點,若動點在軌跡上,求的最大值.22.(10分)如圖,在四棱錐中,底面,,是的中點,,.(1)證明:;(2)求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)平面向量垂直的性質(zhì),結合平面向量數(shù)量積的坐標表示公式、充分性、必要性的定義進行求解判斷即可.詳解】當時,有,顯然由,但是由不一定能推出,故選:A2、B【解析】根據(jù)與的關系求出通項,然后可知答案.【詳解】當時,,當時,,綜上,的通項公式為,數(shù)列為等差數(shù)列同理,由等比數(shù)列定義可判斷數(shù)列不是等比數(shù)列.故選:B3、D【解析】設點,取,可得,求出的值,利用拋物線的定義可求得的值.【詳解】設點,其中,則,,取,則,可得,因為,可得,解得,則,因此,.故選:D.4、C【解析】拋物線焦點為,準線方程為,由得或所以,故答案為C考點:1、拋物線的定義;2、直線與拋物線的位置關系5、B【解析】根據(jù)空間向量的線性運算即可求解.【詳解】解:由題知,故選:B.6、C【解析】根據(jù)兩直線平行求得的值,由此確定充分、必要條件.【詳解】由于,所以,當時,兩直線重合,不符合題意,所以.所以“”是“直線:與直線:平行”的充要條件.故選:C7、C【解析】如下圖所示,是底角為的等腰三角形,則有所以,所以又因為,所以,,所以所以答案選C.考點:橢圓的簡單幾何性質(zhì).8、A【解析】求出圓關于軸的對稱圓的圓心坐標,以及半徑,然后求解圓與圓的圓心距減去兩個圓的半徑和,即可求出的最小值.【詳解】圓關于軸對稱圓的圓心坐標,半徑為1,圓的圓心坐標為,半徑為3,易知,當三點共線時,取得最小值,的最小值為圓與圓的圓心距減去兩個圓的半徑和,即:.故選:A.注意:9至12題為多選題9、B【解析】函數(shù)既有極大值又有極小值轉(zhuǎn)化為導函數(shù)在定義域上有兩個不同的零點.【詳解】因為既有極大值又有極小值,且,所以有兩個不等的正實數(shù)解,所以,且,解得,且.故選:B.10、B【解析】求出已知雙曲線的漸近線方程,逐一驗證即可.【詳解】雙曲線的漸近線方程為,而雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為.故選:B11、B【解析】利用兩直線平行的等價條件求得實數(shù)m的值.【詳解】∵兩條直線x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故選B【點睛】已知兩直線的一般方程判定兩直線平行或垂直時,記住以下結論,可避免討論:已知,,則,12、A【解析】利用已知條件,推出數(shù)列的差數(shù)的差組成的數(shù)列是等差數(shù)列,轉(zhuǎn)化求解即可【詳解】由題意可知,1,5,11,21,37,61,……,的差的數(shù)列為4,6,10,16,24,……,則這個數(shù)列的差組成的數(shù)列為:2,4,6,8,……,是一個等差數(shù)列,設原數(shù)列的第7項為,則,解得,所以原數(shù)列的第7項為95,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】延長交于點,利用角平分線結合中位線和雙曲線定義求得的關系,然后利用,及漸近線方程即可求得結果.【詳解】延長交于點,∵是的平分線,,,又是中點,所以,且,又,,,又,雙曲線E的漸近線方程為故答案為:.14、【解析】根據(jù)導數(shù)的定義求解即可【詳解】由,得,所以,故答案為:15、;【解析】求出圓的圓心坐標,代入直線方程求解即可【詳解】解:的圓心圓被直線平分,可知直線經(jīng)過圓的圓心,可得解得;故答案為:1【點睛】本題考查直線與圓的位置關系的應用,屬于基礎題16、【解析】求出直線的方程,聯(lián)立方程,求得B點的坐標,從而可得出答案.【詳解】解:由題意知,,,直線的方程為,聯(lián)立方程組,解得,或,即,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)答案見解析【解析】(1)設的公差為,根據(jù)等比中項的性質(zhì)得到,即可求,從而求出的通項公式,所以,即可求出等比數(shù)列的公比,從而求出的通項公式;(2)若選①:則,利用裂項相消法求和即可;若選②:則,根據(jù)等比數(shù)列求和公式計算可得;若選③:則利用分組求和法求和即可;【小問1詳解】解:設的公差為,成等比數(shù)列,,,解得或,,,即,,的公比,,【小問2詳解】解:若選①:則,;若選②:則,;若選③:則,.18、(1)(2)證明見解析【解析】(1)根據(jù)橢圓離心率公式,結合橢圓的性質(zhì)進行求解即可;(2)設出直線CF的方程與橢圓方程聯(lián)立,根據(jù)斜率公式,結合一元二次方程根與系數(shù)關系進行求解即可.【小問1詳解】(1),,∴,,,∴;【小問2詳解】設,,則,CF:聯(lián)立∴,∴【點睛】關鍵點睛:利用一元二次方程根與系數(shù)的關系是解題的關鍵.19、(1),,(2)第三組應抽人,第四組應抽人,第五組應抽人(3)【解析】(1)根據(jù)頻率分布表的數(shù)據(jù)求出b,c,d的值;(2)三個組共有60人,從而利用分層抽樣抽樣方法抽取6名學生第三組應抽3人,第四組應抽2人,第五組應抽1人;(3)記第三組抽出的3人分別為,第四組抽出的2人分別為,第五組抽出的1人為,利用列舉法結合概率公式得出答案.【小問1詳解】由題意得,,【小問2詳解】三個組共有60人,所以第三組應抽人,第四組應抽人,第五組應抽人.【小問3詳解】記第三組抽出的3人分別為,第四組抽出的2人分別為,第五組抽出的1人為,從這6人中隨機抽取2人,基本事件包含,共15個基本事件.其中2人來自同一組的情況有,共4種.所以,2人來自同一組的概率為.20、(1)極小值為,無極大值;(2).【解析】(1)對函數(shù)進行求導、列表、判斷函數(shù)的單調(diào)性,最后根據(jù)函數(shù)極值的定義進行求解即可;(2)對進行常變量分離,然后構造新函數(shù),對新函數(shù)進行求導,判斷其單調(diào)性,進而求出新函數(shù)的最值,最后根據(jù)題意求出的取值范圍即可.【詳解】(1)函數(shù)的定義域為,當時,.由,得.當變化時,,的變化情況如下表-0+單調(diào)遞減極小值單調(diào)遞增所以在上單調(diào)遞減,上單調(diào)遞增,所以函數(shù)的極小值為,無極大值.(2)對,恒成立,即對,恒成立.令,則.由得,當時,,單調(diào)遞增;當時,,單調(diào)遞減,所以,因此.所以的取值范圍是.【點睛】本題考查了利用導數(shù)研究函數(shù)的單調(diào)性、極值、最值,考查了構造函數(shù)法、常變量分離法,考查了數(shù)學運算能力和分類討論思想.21、(1)(2)(3)【解析】(1)先表示出邊、所在直線的斜率,然后根據(jù)兩條直線的斜率關系建立方程即可;(2)聯(lián)立直線與橢圓方程,利用韋達定理和中點坐標公式即可求出直線的斜率;(3)先表示出,然后利用橢圓的性質(zhì),進而確定的最大值.【小問1詳解】設點,則由可得:化簡得:故頂點的軌跡的方程:【小問2詳解】當直線的斜率不存在時,顯然不符合題意;當直線的斜率存在時,設直線的方程為聯(lián)立方程組消去可得:設直線與軌跡的交點,的坐標分別為由韋達定理得:點為、兩點的中點,可得:,即則有:解得:故求直線的方程為:【小問3詳解】由(1)可知,設則有:又

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論