




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省湘東六校2025屆高二上數學期末綜合測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點是雙曲線的一個焦點,則雙曲線的漸近線方程為()A. B.C. D.2.設雙曲線的虛軸長為,焦距為,則雙曲線的漸近線方程為()A. B.C. D.3.若將一個橢圓繞其中心旋轉90°,所得橢圓短軸兩頂點恰好是旋轉前橢圓的兩焦點,這樣的橢圓稱為“對偶橢圓”,下列橢圓中是“對偶橢圓”的是()A. B.C. D.4.設曲線在點處的切線與x軸、y軸分別交于A,B兩點,O為坐標原點,則的面積等于()A.1 B.2C.4 D.65.設為可導函數,且滿足,則曲線在點處的切線的斜率是A. B.C. D.6.已知則是的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.定義域為的函數滿足,且的導函數,則滿足的的集合為A. B.C. D.8.在四棱錐中,底面ABCD是正方形,E為PD中點,若,,,則()A. B.C. D.9.黃金矩形是寬()與長()的比值為黃金分割比的矩形,如圖所示,把黃金矩形分割成一個正方形和一個黃金矩形,再把矩形分割出正方形.在矩形內任取一點,則該點取自正方形內的概率是A. B.C. D.10.已知直線l的方向向量,平面α的一個法向量為,則直線l與平面α的位置關系是()A.平行 B.垂直C.在平面內 D.平行或在平面內11.下列函數的求導正確的是()A. B.C. D.12.已知橢圓:,左、右焦點分別為,過的直線交橢圓于兩點,若的最大值為5,則的值是A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.與同一條直線都相交的兩條直線的位置關系是________14.命題“若實數a,b滿足,則且”是_______命題(填“真”或“假”).15.與圓外切于原點,且被y軸截得的弦長為8的圓的標準方程為__________16.某班有位同學,將他們從至編號,現用系統抽樣的方法從中選取人參加文藝演出,抽出的編號從小到大依次排列,若排在第一位的編號是,那么第四位的編號是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數列的前項和為,且.(1)求數列的通項公式;(2)令,求數列的前項和.18.(12分)已知橢圓:的左、右焦點分別為,,離心率為,且過點.(1)求橢圓的標準方程;(2)若過點的直線與橢圓相交于,兩點(A、B非橢圓頂點),求的最大值.19.(12分)動點與定點的距離和它到定直線的距離的比是,記動點M的軌跡為曲線C.(1)求曲線C的方程;(2)已知過點的直線與曲線C相交于兩點,,請問點P能否為線段的中點,并說明理由.20.(12分)已知橢圓C經過,兩點(1)求橢圓C的標準方程;(2)直線l與C交于P,Q兩點,M是PQ的中點,O是坐標原點,,求證:的邊PQ上的高為定值21.(12分)在△中,角A,B,C的對邊分別為a,b,c,已知,,.(1)求的大小及△的面積;(2)求的值.22.(10分)已知數列的前項和為,,.(1)求的通項公式;(2)求數列的前項和;(3)若數列,,求前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據拋物線和寫出焦點坐標,利用題干中的坐標相等,解出,結合從而求出答案.【詳解】拋物線的焦點為,雙曲線的,,所以,所以雙曲線的右焦點為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.2、B【解析】求出、的值,即可得出雙曲線的漸近線方程.【詳解】由已知可得,,則,因此,該雙曲線的漸近線方程為.故選:B.3、A【解析】由題意可得,所給的橢圓中的,的值求出的值,進而判斷所給命題的真假【詳解】解:因為橢圓短的軸兩頂點恰好是旋轉前橢圓的兩焦點,即,即,中,,,所以,故,所以正確;中,,,所以,所以不正確;中,,,所以,所以不正確;中,,,所以,所以不正確;故選:4、C【解析】求出原函數的導函數,得到函數在處的導數值,寫出切線方程,分別求得切線在兩坐標軸上的坐標,再由三角形面積公式求解【詳解】由,得,,又切線過點,曲線在點處的切線方程為,取,得,取,得的面積等于故選:C5、D【解析】由題,為可導函數,,即曲線在點處的切線的斜率是,選D【點睛】本題考查導數的定義,切線的斜率,以及極限的運算,本題解題的關鍵是對所給的極限式進行整理,得到符合導數定義的形式6、A【解析】先解不等式,再比較集合包含關系確定選項.【詳解】因為,所以是的充分不必要條件,選A.【點睛】本題考查解含絕對值不等式、解一元二次不等式以及充要關系判定,考查基本分析求解能力,屬基礎題.7、B【解析】利用2f(x)<x+1構造函數g(x)=2f(x)-x-1,進而可得g′(x)=2f′(x)-1>0.得出g(x)的單調性結合g(1)=0即可解出【詳解】令g(x)=2f(x)-x-1.因為f′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)單調增函數因為f(1)=1,所以g(1)=2f(1)-1-1=0.所以當x<1時,g(x)<0,即2f(x)<x+1.故選B.【點睛】本題主要考察導數的運算以及構造函數利用其單調性解不等式.屬于中檔題8、C【解析】根據向量線性運算法則計算即可.【詳解】故選:C9、C【解析】設矩形的長,寬分別為,所以,把黃金矩形分割成一個正方形和一個黃金矩形,所以,設矩形的面積為,正方形的面積為,設在矩形內任取一點,則該點取自正方形內的概率是,則,故本題選C.【詳解】本題考查了幾何概型,考查了運算能力.10、D【解析】根據題意,結合線面位置關系的向量判斷方法,即可求解.【詳解】根據題意,因為,所以,所以直線l與平面α的位置關系是平行或在平面內故選:D11、B【解析】對各個選項進行導數運算驗證即可.【詳解】,故A錯誤;,故B正確;,故C錯誤;,故D錯誤.故選:B12、D【解析】由題意可知橢圓是焦點在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=8﹣|AB|,再由過橢圓焦點的弦中通徑的長最短,可知當AB垂直于x軸時|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值即可【詳解】由0<b<2可知,焦點在x軸上,∵過F1的直線l交橢圓于A,B兩點,則|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8∴|BF2|+|AF2|=8﹣|AB|當AB垂直x軸時|AB|最小,|BF2|+|AF2|值最大,此時|AB|=b2,則5=8﹣b2,解得b,故選D【點睛】本題考查直線與圓錐曲線的關系,考查了橢圓的定義,考查橢圓的通徑公式,考查計算能力,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、平行,相交或者異面【解析】由空間中兩直線的位置關系求解即可【詳解】由題意與同一條直線都相交的兩條直線的位置關系可能是:平行,相交或者異面,故答案為:平行,相交或者異面,14、假【解析】列舉特殊值,判斷真假命題.【詳解】當時,,所以,命題“若實數a,b滿足,則且”是假命題.故答案為:假15、;【解析】設所求圓的圓心為,根據兩圓外切于原點可知兩圓心與原點共線,再根據弦長列出方程組求出即可.【詳解】設所求圓的圓心為,因為圓的圓心為,與原點連線的斜率為,又所求圓與已知圓外切于原點,,①所以所求圓的半徑滿足,又被y軸截得的弦長為8,②由①②解得,所以圓的方程為.故答案為:16、29【解析】根據給定信息利用系統抽樣的特征直接計算作答.【詳解】因系統抽樣是等距離抽樣,依題意,相鄰兩個編號相距,所以第四位的編號是.故答案為:29三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據得到,再結合為等比數列求出首項,進而求得數列的通項公式;(2)由(1)求得數列的通項公式,進而利用公式法即可求出【小問1詳解】解:(1),,當時,,即,又,為等比數列,所以,,數列的通項公式為【小問2詳解】(2)由(1)知,則,數列的前項和18、(1)(2)【解析】(1)根據離心率和點在橢圓上建立方程,結合,然后解出方程即可(2)設直線的斜率為,聯立直線與橢圓的方程,然后利用韋達定理表示出,兩點的坐標關系,并表示出為直線斜率的函數,然后求出的最大值【小問1詳解】由橢圓過點,則有:由可得:解得:則橢圓的方程為:【小問2詳解】由(1)得,,已知直線不過橢圓長軸頂點則直線的斜率不為,設直線的方程為:設,,聯立直線方程和橢圓方程整理可得:故是恒成立的根據韋達定理可得:,則有:由,可得:所以的最大值為:19、(1)(2)不能,理由見解析.【解析】(1)利用題中距離之比列出關于動點的方程即可求解;(2)先假設點P能為線段的中點,再利用點差法求出直線的斜率,最后聯立直線與曲線進行檢驗即可.【小問1詳解】解:動點與定點的距離和它到定直線的距離的比是則等式兩邊平方可得:化簡得曲線C的方程為:【小問2詳解】解:點不能為線段的中點,理由如下:由(1)知,曲線C的方程為:過點的直線斜率為,,因為過點的直線與曲線C相交于兩點,所以,兩式作差并化簡得:①當為的中點時,則,②將②代入①可得:此時過點的直線方程為:將直線方程與曲線C方程聯立得:,,無解與過點的直線與曲線C相交于兩點矛盾所以點不能為線段的中點【點睛】方法點睛:當圓錐曲線中涉及中點和斜率的問題時,常用點差法進行求解.20、(1)(2)證明見解析【解析】(1)設出橢圓方程,根據的坐標求得橢圓方程.(2)對直線的斜率分成存在和不存在兩種情況進行分類討論,求得的邊PQ上的高來證得結論成立.【小問1詳解】設橢圓方程為,將坐標代入得,所以橢圓方程為.小問2詳解】當直線的斜率不存在時,關于軸對稱,由于,所以,即,直線與橢圓有兩個交點,符合題意.所以的邊PQ上的高為.當直線的斜率不存在時,設直線的方程為,由消去并化簡得①,設,則,.由于M是PQ的中點且,所以,所以,即,,,.此時①的.原點到直線的距離為.綜上所述,的邊PQ上的高為定值21、(1),△的面積為;(2).【解析】(1)應用余弦定理求的大小,由三角形面積公式求△的面積;(2)由(1)及正弦定理的邊角關系可得,即可求目標式的值.【小問1詳解】在△中,由余弦定理得:,又,則.所以△的面積為.【小問2詳解】由(1)得:,由正弦定理得:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電視直銷協議書
- 董事內部協議書
- 電桿質保協議書
- 繼父建房協議書
- 糞肥還田協議書
- 線路租用協議書
- 簽訂戀愛協議書
- 松江區婚姻糾紛協議書
- 暑假生勤工儉學協議書
- 父親和兒女簽字協議書
- 中醫各家學說(湖南中醫藥大學)知到課后答案智慧樹章節測試答案2025年春湖南中醫藥大學
- 大學辦學模式改革創新的策略及實施方案
- 物業客服服務溝通技巧培訓課件
- 監獄消防安全生產課件
- 電力市場發展與人才培養戰略規劃
- 人力資源培訓:RACI表培訓課件
- DBJ33T 1020-2022 建設工程地質鉆探安全技術規程
- 高中家長會 共筑夢想,攜手未來課件-高二下學期期末家長會
- 人文關懷在臨床護理中的應用
- 醫院營養科建設方案
- 幼兒園伙食費管理制度
評論
0/150
提交評論