




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河南省三門峽市陜州區第一高級中學高二上數學期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線C的離心率為,,是C的兩個焦點,P為C上一點,,若△的面積為,則雙曲線C的實軸長為()A.1 B.2C.4 D.62.已知等差數列的前項和為,,,當取最大時的值為()A. B.C. D.3.南宋數學家楊輝所著的《詳解九章算法》中有如下俯視圖所示的幾何體,后人稱之為“三角垛”.其最上層有1個球,第二層有3個球,第三層有6個球,…,則第十層球的個數為()A.45 B.55C.90 D.1104.在空間直角坐標系中,點關于平面的對稱點為,則()A.-4 B.-10C.4 D.105.已知等比數列中,,前三項之和,則公比的值為()A1 B.C.1或 D.或6.已知點是橢圓上的任意點,是橢圓的左焦點,是的中點,則的周長為()A. B.C. D.7.原點到直線的距離的最大值為()A. B.C. D.8.某考點配備的信號檢測設備的監測范圍是半徑為100米的圓形區域,一名工作人員持手機以每分鐘50米的速度從設備正東方向米的處出發,沿處西北方向走向位于設備正北方向的處,則這名工作人員被持續監測的時長為()A.1分鐘 B.分鐘C.2分鐘 D.分鐘9.用這3個數組成沒有重復數字的三位數,則事件“這個三位數是偶數”與事件“這個三位數大于342”()A.是互斥但不對立事件 B.不是互斥事件C.是對立事件 D.是不可能事件10.執行如圖所示的程序框圖,則輸出的的值是()A. B.C. D.11.命題P:ax2+2x﹣1=0有實數根,若¬p是假命題,則實數a的取值范圍是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}12.命題“”的否定是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.小明同學發現家中墻壁上燈光邊界類似雙曲線的一支.如圖,P為雙曲線的頂點,經過測量發現,該雙曲線的漸近線相互垂直,AB⊥PC,AB=60cm,PC=20cm,雙曲線的焦點位于直線PC上,則該雙曲線的焦距為____cm.14.在的展開式中,含項的系數為______(結果用數值表示)15.已知橢圓的焦點分別為,A為橢圓上一點,則________16.曲線在點處的切線的方程為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數f(x)=(1)求函數f(x)在x=1處的切線方程;(2)求證:18.(12分)在四棱錐中,底面為直角梯形,,,平面底面,為的中點,是棱上的點,,,.(1)求證:平面平面;(2)若,求直線與所成角的余弦值.19.(12分)已知a,b,c分別為△ABC三個內角A,B,C的對邊,,,△ABC的面積為(1)求a;(2)若D為BC邊上一點,且∠BAD=,求∠ADC的正弦值20.(12分)如圖,在三棱錐中,底面,.點,,分別為棱,,的中點,是線段的中點,,(1)求證:平面;(2)求二面角的正弦值;(3)已知點在棱上,且直線與直線所成角的余弦值為,求線段的長21.(12分)在平面直角坐標系xOy中,已知拋物線()的焦點F到雙曲線的漸近線的距離為1.(1)求拋物線C的方程;(2)若不經過原點O的直線l與拋物線C交于A、B兩點,且,求證:直線l過定點.22.(10分)設命題對于任意,不等式恒成立.命題實數a滿足(1)若命題p為真,求實數a的取值范圍;(2)若“p或q”為真,“p且q”為假,求實數a的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由已知條件可得,,,再由余弦定理得,進而求其正弦值,最后利用三角形面積公式列方程求參數a,即可知雙曲線C的實軸長.【詳解】由題意知,點P在右支上,則,又,∴,,又,∴,則在△中,,∴,故,解得,∴實軸長為,故選:C.2、B【解析】由已知條件及等差數列通項公式、前n項和公式求基本量,再根據等差數列前n項和的函數性質判斷取最大時的值.【詳解】令公差為,則,解得,所以,當時,取最大值.故選:B3、B【解析】根據題意,發現規律并將規律表達出來,第層有個球.【詳解】根據規律,可以得知:第一層有個球;第二層有個球;第三層有個球,則根據規律可知:第層有個球設第層的小球個數為,則有:故第十層球的個數為:故選:4、A【解析】根據關于平面對稱的點的規律:橫坐標、縱坐標保持不變,豎坐標變為它的相反數,即可求出點關于平面的對稱點的坐標,再利用向量的坐標運算求.【詳解】解:由題意,關于平面對稱的點橫坐標、縱坐標保持不變,豎坐標變為它的相反數,從而有點關于對稱的點的坐標為(2,?1,-3).故選:A【點睛】本題以空間直角坐標系為載體,考查點關于面的對稱,考查數量積的坐標運算,屬于基礎題5、C【解析】根據條件列關于首項與公比的方程組,即可解得公比,注意等比數列求和公式使用條件.【詳解】等比數列中,,前三項之和,若,,,符合題意;若,則,解得,即公比的值為1或,故選:C【點睛】本題考查等比數列求和公式以及基本量計算,考查基本分析求解能力,屬基礎題.6、A【解析】設橢圓另一個焦點為,連接,利用中位線的性質結合橢圓的定義可求得結果.【詳解】在橢圓中,,,,如圖,設橢圓的另一個焦點為,連接,因為、分別為、的中點,則,則的周長為,故選:A.7、C【解析】求出直線過的定點,當時,原點到直線距離最大,則可求出原點到直線距離的最大值;【詳解】因為可化為,所以直線過直線與直線交點,聯立可得所以直線過定點,當時,原點到直線距離最大,最大距離即為,此時最大值為,故選:C.8、C【解析】以設備的位置為坐標原點,其正東方向為軸正方向,正北方向為軸正方向建立平面直角坐標系,求得直線和圓的方程,利用點到直線的距離公式和圓的弦長公式,求得的長,進而求得持續監測的時長.【詳解】以設備的位置為坐標原點,其正東方向為軸正方向,正北方向為軸正方向建立平面直角坐標系,如圖所示,則,,可得,圓記從處開始被監測,到處監測結束,因為到的距離為米,所以米,故監測時長為分鐘故選:C.9、B【解析】根據題意列舉出所有可能性,進而根據各類事件的定義求得答案.【詳解】由題意,將2,3,4組成一個沒有重復數字的三位數的情況有:{234,243,324,342,423,432},其中偶數有{234,324,342,432},大于342的有{423,432}.所以兩個事件不是互斥事件,也不是對立事件.故選:B.10、C【解析】由題意確定流程圖的功能,然后計算其輸出值即可.【詳解】運行程序,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,滿足,利用裂項求和可得:.故選:C.【點睛】識別、運行程序框圖和完善程序框圖的思路:(1)要明確程序框圖的順序結構、條件結構和循環結構(2)要識別、運行程序框圖,理解框圖所解決的實際問題(3)按照題目的要求完成解答并驗證11、C【解析】根據是假命題,判斷出是真命題.對分成,和兩種情況,結合方程有實數根,求得的取值范圍.詳解】┐p是假命題,則p是真命題,∴ax2+2x﹣1=0有實數根,當a=0時,方程為2x﹣1=0,解得x=0.5,有根,符合題意;當a≠0時,方程有根,等價于△=4+4a≥0,∴a≥﹣1且,綜上所述,a的可能取值為a≥﹣1故選:C【點睛】本小題主要考查根據命題否定的真假性求參數,屬于基礎題.12、C【解析】特稱命題的否定,先把存在量詞改為全稱量詞,再把結論進行否定即可.【詳解】命題“”的否定是“”.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立直角坐標系,利用代入法、雙曲線的對稱性進行求解即可.【詳解】建立如圖所示的直角坐標系,設雙曲線的標準方程為:,因為該雙曲線的漸近線相互垂直,所以,即,因為AB=60cm,PC=20cm,所以點的坐標為:,代入,得:,因此有,所以該雙曲線的焦距為,故答案為:14、12【解析】通過二次展開式就可以得到.【詳解】的展開式中含含項的系數為故答案為:1215、4【解析】直接利用橢圓的定義即可求解.【詳解】因為橢圓的焦點分別為,A為橢圓上一點,所以.故答案為:416、【解析】求出導函數,得切線斜率后可得切線方程【詳解】,∴切線斜率為,切線方程為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)y=5x-1;(2)證明見解析【解析】(1)求出導函數,求出切線的斜率,切點坐標,然后求切線方程(2)不等式化簡為.設,求出導函數,判斷函數的單調性求解函數的最值,然后證明即可【詳解】解:(1)的定義域為,的導數由(1)可得,則切點坐標為,所求切線方程為(2)證明:即證.設,則,由,得當時,;當時,在上單調遞增,在上單調遞減,(1),即不等式成立,則原不等式成立18、(1)證明見解析;(2);【解析】(1)證明,利用面面垂直的性質可得出平面,再利用面面垂直的判定定理可證得平面平面;(2)連接,以點為坐標原點,、、所在直線分別為軸建立空間直角坐標系,設,根據可得出,求出的值,利用空間向量法可求得直線與所成角的余弦值.【詳解】(1)為的中點,且,則,又因為,則,故四邊形為平行四邊形,因為,故四邊形為矩形,所以,平面平面,平面平面,平面,平面,因為平面,因此,平面平面;(2)連接,由(1)可知,平面,,為的中點,則,以點為坐標原點,所在直線分別為軸建立空間直角坐標系,則、、、、,設,,因為,則,解得,,,則.因此,直線與所成角的余弦值為.19、(1)(2)【解析】(1)利用面積公式及余弦定理可求解;(2)由正弦定理得到,再運用同角函數的關系得到,最后運用正弦的兩角和公式求解即可.【小問1詳解】∵,,,∴由余弦定理:,∴【小問2詳解】在中,由正弦定理得,∴,易知B為銳角,∴,∴20、(1)證明見解析;(2);(3)或【解析】本小題主要考查直線與平面平行、二面角、異面直線所成的角等基礎知識.考查用空間向量解決立體幾何問題的方法.考查空間想象能力、運算求解能力和推理論證能力.首先要建立空間直角坐標系,寫出相關點的坐標,證明線面平行只需求出平面的法向量,計算直線對應的向量與法向量的數量積為0,求二面角只需求出兩個半平面對應的法向量,借助法向量的夾角求二面角,利用向量的夾角公式,求出異面直線所成角的余弦值,利用已知條件,求出的值.試題解析:如圖,以A為原點,分別以,,方向為x軸、y軸、z軸正方向建立空間直角坐標系.依題意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)證明:=(0,2,0),=(2,0,).設,為平面BDE的法向量,則,即.不妨設,可得.又=(1,2,),可得.因為平面BDE,所以MN//平面BDE.(2)解:易知為平面CEM的一個法向量.設為平面EMN的法向量,則,因為,,所以.不妨設,可得.因此有,于是.所以,二面角C—EM—N的正弦值為.(3)解:依題意,設AH=h(),則H(0,0,h),進而可得,.由已知,得,整理得,解得,或.所以,線段AH的長為或.【考點】直線與平面平行、二面角、異面直線所成角【名師點睛】空間向量是解決空間幾何問題的銳利武器,不論是求空間角、空間距離還是證明線面關系利用空間向量都很方便,利用向量夾角公式求異面直線所成的角又快又準,特別是借助平面的法向量求線面角,二面角或點到平面的距離都很容易.21、(1)(2)證明見解析【解析】(1)求出雙曲線的漸近線方程,由點到直線距離公式可得參數值得拋物線方程;(2)設直線方程為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電器具包裝與物流考核試卷
- 2024年項目管理專業人士資格認證考試專業知識試題及答案
- 2025年注會考試成功的秘訣試題及答案
- 2024年項目管理考試實操指導試題及答案
- 電氣設備光纖傳感技術考核試卷
- 環保志愿者培訓考核試卷
- 掌握技巧2024年項目管理專業人士資格考試試題及答案
- 江蘇河道杉木樁施工方案
- 中型海水淡化處理設備考核試卷
- 項目管理人員資格考試資格設置試題及答案
- 江蘇師范大學成人繼續教育網絡課程《英語》單元測試及參考答案
- 雙堿法脫硫操作規程
- 中國骨質疏松診治指南(新)ppt
- 全國中學生物理競賽及實驗課件
- 病案信息技術基礎知識考試重點梳理(最新最全)
- 安全施工作業票(模版)
- 環保管理制度(適用于軟件企業)
- DB 33-T 1015-2021居住建筑節能設計標準(高清正版)
- 鋼結構門式剛架廠房設計土木工程畢業設計
- 中國供銷合作社標識使用手冊課件
- 幼兒園兒歌100首
評論
0/150
提交評論