




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆安徽省安慶市潛山第二中學數(shù)學高三上期末調研試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.2.已知函數(shù),,,,則,,的大小關系為()A. B. C. D.3.若復數(shù)z滿足,則復數(shù)z在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知向量,,設函數(shù),則下列關于函數(shù)的性質的描述正確的是A.關于直線對稱 B.關于點對稱C.周期為 D.在上是增函數(shù)5.設等差數(shù)列的前n項和為,若,則()A. B. C.7 D.26.在中所對的邊分別是,若,則()A.37 B.13 C. D.7.下圖為一個正四面體的側面展開圖,為的中點,則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.8.設函數(shù)若關于的方程有四個實數(shù)解,其中,則的取值范圍是()A. B. C. D.9.我國古代數(shù)學著作《九章算術》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗為十升).問,米幾何?”下圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=15(單位:升),則輸入的k的值為()?A.45 B.60 C.75 D.10010.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.811.已知復數(shù)滿足,則()A. B. C. D.12.設,則,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知一組數(shù)據(jù),1,0,,的方差為10,則________14.復數(shù)為虛數(shù)單位)的虛部為__________.15.已知函數(shù)對于都有,且周期為2,當時,,則________________________.16.已知橢圓的左、右焦點分別為、,過橢圓的右焦點作一條直線交橢圓于點、.則內切圓面積的最大值是_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù).(1)求的值;(2)若,求函數(shù)的單調遞減區(qū)間.18.(12分)為了解網(wǎng)絡外賣的發(fā)展情況,某調查機構從全國各城市中抽取了100個相同等級地城市,分別調查了甲乙兩家網(wǎng)絡外賣平臺(以下簡稱外賣甲、外賣乙)在今年3月的訂單情況,得到外賣甲該月訂單的頻率分布直方圖,外賣乙該月訂單的頻數(shù)分布表,如下圖表所示.訂單:(單位:萬件)頻數(shù)1223訂單:(單位:萬件)頻數(shù)402020102(1)現(xiàn)規(guī)定,月訂單不低于13萬件的城市為“業(yè)績突出城市”,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡外賣平臺”有關.業(yè)績突出城市業(yè)績不突出城市總計外賣甲外賣乙總計(2)由頻率分布直方圖可以認為,外賣甲今年3月在全國各城市的訂單數(shù)(單位:萬件)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),的值已求出,約為3.64,現(xiàn)把頻率視為概率,解決下列問題:①從全國各城市中隨機抽取6個城市,記為外賣甲在今年3月訂單數(shù)位于區(qū)間的城市個數(shù),求的數(shù)學期望;②外賣甲決定在今年3月訂單數(shù)低于7萬件的城市開展“訂外賣,搶紅包”的營銷活動來提升業(yè)績,據(jù)統(tǒng)計,開展此活動后城市每月外賣訂單數(shù)將提高到平均每月9萬件的水平,現(xiàn)從全國各月訂單數(shù)不超過7萬件的城市中采用分層抽樣的方法選出100個城市不開展營銷活動,若每按一件外賣訂單平均可獲純利潤5元,但每件外賣平均需送出紅包2元,則外賣甲在這100個城市中開展營銷活動將比不開展營銷活動每月多盈利多少萬元?附:①參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,則,.19.(12分)已知函數(shù).(Ⅰ)已知是的一個極值點,求曲線在處的切線方程(Ⅱ)討論關于的方程根的個數(shù).20.(12分)“綠水青山就是金山銀山”,為推廣生態(tài)環(huán)境保護意識,高二一班組織了環(huán)境保護興趣小組,分為兩組,討論學習.甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現(xiàn)要從這人的兩個興趣小組中抽出人參加學校的環(huán)保知識競賽.(1)設事件為“選出的這個人中要求兩個男生兩個女生,而且這兩個男生必須來自不同的組”,求事件發(fā)生的概率;(2)用表示抽取的人中乙組女生的人數(shù),求隨機變量的分布列和期望21.(12分)已知函數(shù)是自然對數(shù)的底數(shù).(1)若,討論的單調性;(2)若有兩個極值點,求的取值范圍,并證明:.22.(10分)某中學為研究學生的身體素質與體育鍛煉時間的關系,對該校名高三學生平均每天體育鍛煉時間進行調查,如表:(平均每天鍛煉的時間單位:分鐘)將學生日均體育鍛煉時間在的學生評價為“鍛煉達標”.(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表:并通過計算判斷,是否能在犯錯誤的概率不超過的前提下認為“鍛煉達標”與性別有關?(2)在“鍛煉達標”的學生中,按男女用分層抽樣方法抽出人,進行體育鍛煉體會交流.(i)求這人中,男生、女生各有多少人?(ii)從參加體會交流的人中,隨機選出人發(fā)言,記這人中女生的人數(shù)為,求的分布列和數(shù)學期望.參考公式:,其中.臨界值表:0.100.050.0250.01002.7063.8415.0246.635
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)面面關系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯誤;命題“:,”的否定為:,,故B錯誤;為真,說明至少一個為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.2、B【解析】
可判斷函數(shù)在上單調遞增,且,所以.【詳解】在上單調遞增,且,所以.故選:B【點睛】本題主要考查了函數(shù)單調性的判定,指數(shù)函數(shù)與對數(shù)函數(shù)的性質,利用單調性比大小等知識,考查了學生的運算求解能力.3、A【解析】
化簡復數(shù),求得,得到復數(shù)在復平面對應點的坐標,即可求解.【詳解】由題意,復數(shù)z滿足,可得,所以復數(shù)在復平面內對應點的坐標為位于第一象限故選:A.【點睛】本題主要考查了復數(shù)的運算,以及復數(shù)的幾何表示方法,其中解答中熟記復數(shù)的運算法則,結合復數(shù)的表示方法求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.4、D【解析】
當時,,∴f(x)不關于直線對稱;當時,,∴f(x)關于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數(shù).本題選擇D選項.5、B【解析】
根據(jù)等差數(shù)列的性質并結合已知可求出,再利用等差數(shù)列性質可得,即可求出結果.【詳解】因為,所以,所以,所以,故選:B【點睛】本題主要考查等差數(shù)列的性質及前項和公式,屬于基礎題.6、D【解析】
直接根據(jù)余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.【點睛】本題主要考查余弦定理解三角形,屬于基礎題.7、C【解析】
將正四面體的展開圖還原為空間幾何體,三點重合,記作,取中點,連接,即為與直線所成的角,表示出三角形的三條邊長,用余弦定理即可求得.【詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點重合,記作:則為中點,取中點,連接,設正四面體的棱長均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.【點睛】本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應用,屬于中檔題.8、B【解析】
畫出函數(shù)圖像,根據(jù)圖像知:,,,計算得到答案.【詳解】,畫出函數(shù)圖像,如圖所示:根據(jù)圖像知:,,故,且.故.故選:.【點睛】本題考查了函數(shù)零點問題,意在考查學生的計算能力和應用能力,畫出圖像是解題的關鍵.9、B【解析】
根據(jù)程序框圖中程序的功能,可以列方程計算.【詳解】由題意,.故選:B.【點睛】本題考查程序框圖,讀懂程序的功能是解題關鍵.10、A【解析】
依題意可得,再根據(jù)離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點睛】本題考查雙曲線的簡單幾何性質,屬于基礎題.11、A【解析】
根據(jù)復數(shù)的運算法則,可得,然后利用復數(shù)模的概念,可得結果.【詳解】由題可知:由,所以所以故選:A【點睛】本題主要考查復數(shù)的運算,考驗計算,屬基礎題.12、A【解析】
根據(jù)換底公式可得,再化簡,比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點睛】本題考查換底公式和對數(shù)的運算,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、7或【解析】
依據(jù)方差公式列出方程,解出即可.【詳解】,1,0,,的平均數(shù)為,所以解得或.【點睛】本題主要考查方差公式的應用.14、1【解析】試題分析:,即虛部為1,故填:1.考點:復數(shù)的代數(shù)運算15、【解析】
利用,且周期為2,可得,得.【詳解】∵,且周期為2,∴,又當時,,∴,故答案為:【點睛】本題考查函數(shù)的周期性與對稱性的應用,考查轉化能力,屬于基礎題.16、【解析】令直線:,與橢圓方程聯(lián)立消去得,可設,則,.可知,又,故.三角形周長與三角形內切圓的半徑的積是三角形面積的二倍,則內切圓半徑,其面積最大值為.故本題應填.點睛:圓錐曲線中最值與范圍的求法有兩種:(1)幾何法:若題目的條件和結論能明顯體現(xiàn)幾何特征及意義,則考慮利用圖形性質來解決,這就是幾何法.(2)代數(shù)法:若題目的條件和結論能體現(xiàn)一種明確的函數(shù),則可首先建立起目標函數(shù),再求這個函數(shù)的最值,求函數(shù)最值的常用方法有配方法,判別式法,重要不等式及函數(shù)的單調性法等.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)的遞減區(qū)間為和【解析】
(1)化簡函數(shù),代入,計算即可;(2)先利用正弦函數(shù)的圖象與性質求出函數(shù)的單調遞減區(qū)間,再結合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【點睛】本題主要考查了三角函數(shù)的恒等變形,正弦函數(shù)的圖象與性質,屬于中檔題.18、(1)見解析,有90%的把握認為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡外賣平臺”有關.(2)①4.911②100萬元.【解析】
(1)根據(jù)頻率分布直方圖與頻率分布表,易得兩個外賣平臺中月訂單不低于13萬件的城市數(shù)量,即可完善列聯(lián)表.通過計算的觀測值,即可結合臨界值作出判斷.(2)①先根據(jù)所給數(shù)據(jù)求得樣本平均值,根據(jù)所給今年3月訂單數(shù)區(qū)間,并由及求得,.結合正態(tài)分布曲線性質可求得,再由二項分布的數(shù)學期望求法求解.②訂單數(shù)低于7萬件的城市有和兩組,根據(jù)分層抽樣的性質可確定各組抽取樣本數(shù).分別計算出開展營銷活動與不開展營銷活動的利潤,比較即可得解.【詳解】(1)對于外賣甲:月訂單不低于13萬件的城市數(shù)量為,對于外賣乙:月訂單不低于13萬件的城市數(shù)量為.由以上數(shù)據(jù)完善列聯(lián)表如下圖,業(yè)績突出城市業(yè)績不突出城市總計外賣甲4060100外賣乙5248100總計92108200且的觀測值為,∴有90%的把握認為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡外賣平臺”有關.(2)①樣本平均數(shù),故==,,的數(shù)學期望,②由分層抽樣知,則100個城市中每月訂單數(shù)在區(qū)間內的有(個),每月訂單數(shù)在區(qū)間內的有(個),若不開展營銷活動,則一個月的利潤為(萬元),若開展營銷活動,則一個月的利潤為(萬元),這100個城市中開展營銷活動比不開展每月多盈利100萬元.【點睛】本題考查了頻率分布直方圖與頻率分布表的應用,完善列聯(lián)表并計算的觀測值作出判斷,分層抽樣的簡單應用,綜合性強,屬于中檔題.19、(Ⅰ);(Ⅱ)見解析【解析】
(Ⅰ)求函數(shù)的導數(shù),利用x=2是f(x)的一個極值點,得f'(2)=0建立方程求出a的值,結合導數(shù)的幾何意義進行求解即可;(Ⅱ)利用參數(shù)法分離法得到,構造函數(shù)求出函數(shù)的導數(shù)研究函數(shù)的單調性和最值,利用數(shù)形結合轉化為圖象交點個數(shù)進行求解即可.【詳解】(Ⅰ)因為,則,因為是的一個極值點,所以,即,所以,因為,,則直線方程為,即;(Ⅱ)因為,所以,所以,設,則,所以在上是增函數(shù),在上是減函數(shù),故,所以,所以,設,則,所以在上是減函數(shù),上是增函數(shù),所以,所以當時,,函數(shù)在是減函數(shù),當時,,函數(shù)在是增函數(shù),因為時,,,,所以當時,方程無實數(shù)根,當時,方程有兩個不相等實數(shù)根,當或時,方程有1個實根.【點睛】本題考查函數(shù)中由極值點求參,導數(shù)的幾何意義,還考查了利用導數(shù)研究方程根的個數(shù)問題,屬于難題.20、(Ⅰ);(Ⅱ)分布列見解析,.【解析】
(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由題得可能取值為,再求x的分布列和期望.【詳解】(Ⅰ)(Ⅱ)可能取值為,,,,,的分布列為0123.【點睛】本題主要考查古典概型的計算,考查隨機變量的分布列和期望的計算,意在考查學生對這些知識的理解掌握水平和分析推理能力.21、(1)減區(qū)間是,增區(qū)間是;(2),證明見解析.【解析】
(1)當時,求得函數(shù)的導函數(shù)以及二階導函數(shù),由此求得的單調區(qū)間.(2)令求得,構造函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國木材封邊熱熔膠市場調查研究報告
- 新疆工程學院《數(shù)學游戲與折紙》2023-2024學年第二學期期末試卷
- 2025年中國料斗秤數(shù)據(jù)監(jiān)測報告
- 2025年中國數(shù)字單相交流電流表數(shù)據(jù)監(jiān)測報告
- 2025-2030年中國一氧化碳行業(yè)運行規(guī)劃及投資價值研究報告
- 新疆警察學院《地理信息科學專業(yè)英語》2023-2024學年第二學期期末試卷
- 肇慶市實驗中學高中歷史二教案:第課中國社會主義經(jīng)濟建設的曲折發(fā)展
- 2025-2030年中國PHA工業(yè)行業(yè)競爭力發(fā)展研究及投資風險預測研究報告
- 新疆師范大學《中醫(yī)經(jīng)典臨床能力跟師實訓(一)》2023-2024學年第二學期期末試卷
- 2025年中國電腦程控全自動壓線機數(shù)據(jù)監(jiān)測研究報告
- 公共停車場建設項目可行性研究報告
- 保安服務標準及工作流程
- 2024年中考數(shù)學幾何模型歸納(全國通用):18 全等與相似模型之十字模型(學生版)
- 外科疾病分級目錄
- 國家級教學成果的培育提煉與申報
- 海南師范大學《高等數(shù)學》2020-2021期末試卷B
- 2023年09月黑龍江省大興安嶺地區(qū)“黑龍江人才周”校園引才活動引進90名人員筆試歷年難易錯點考題薈萃附帶答案詳解
- 直播傭金直播合同帶貨
- 點凸焊操作工藝規(guī)程
- 跳頻通信系統(tǒng)課件
- 兼職駕駛員審批表
評論
0/150
提交評論