江西省吉安市新干縣第二中學2025屆高一數學第一學期期末達標檢測試題含解析_第1頁
江西省吉安市新干縣第二中學2025屆高一數學第一學期期末達標檢測試題含解析_第2頁
江西省吉安市新干縣第二中學2025屆高一數學第一學期期末達標檢測試題含解析_第3頁
江西省吉安市新干縣第二中學2025屆高一數學第一學期期末達標檢測試題含解析_第4頁
江西省吉安市新干縣第二中學2025屆高一數學第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省吉安市新干縣第二中學2025屆高一數學第一學期期末達標檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若是第二象限角,是其終邊上的一點,且,則()A. B.C. D.或2.《九章算術》中“方田”章給出了計算弧田面積時所用的經驗公式,即弧田面積=×(弦×矢+矢).弧田(如圖1)由圓弧和其所對弦圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.現有圓心角為,半徑為2米的弧田(如圖2),則這個弧田面積大約是()平方米.(,結果保留整數)A.2 B.3C.4 D.53.已知扇形的面積為,當扇形的周長最小時,扇形的圓心角為()A1 B.2C.4 D.84.已知,則“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,這樣的分割被稱為黃金分割,黃金分割蘊藏著豐富的數學知識和美學價值,被廣泛運用于藝術創作、工藝設計等領域.黃金分制的比值為無理數,該值恰好等于,則()A. B.C. D.6.函數的定義域是()A. B.C. D.(0,4)7.如果,那么()A. B.C. D.8.設集合,則()A. B.C.{2} D.{-2,2}9.關于的不等式的解集為,,,則關于的不等式的解集為()A. B.C. D.10.函數的一個零點所在的區間是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數的最大值為,且圖像的兩條相鄰對稱軸之間的距離為,求:(1)函數的解析式;(2)當,求函數的單調遞減區間12.已知,且,則實數的取值范圍為__________13.要制作一個容器為4,高為無蓋長方形容器,已知該容器的底面造價是每平方米20元,側面造價是每平方米10元,則該容器的最低總造價是_______(單位:元)14.函數fx=15.已知[x]表示不超過x的最大整數,定義函數f(x)=x-[x].有下列結論:①函數的圖象是一條直線;②函數f(x)的值域為[0,1);③方程f(x)=有無數個解;④函數是R上的增函數.其中正確的是____.(填序號)16.記為偶函數,是正整數,,對任意實數,滿足中的元素不超過兩個,且存在實數使中含有兩個元素,則的值是__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知二次函數,若不等式的解集為,且方程有兩個相等的實數根.(1)求的解析式;(2)若,成立,求實數m的取值范圍.18.已知函數在區間上有最大值,最小值,設.(1)求值;(2)若不等式在時恒成立,求實數的取值范圍.19.函數的定義域為D,若存在正實數k,對任意的,總有,則稱函數具有性質.(1)判斷下列函數是否具有性質,并說明理由.①;②;(2)已知為二次函數,若存在正實數k,使得函數具有性質.求證:是偶函數;(3)已知為給定的正實數,若函數具有性質,求的取值范圍.20.定義在上的函數,如果滿足:對任意,存在常數,都有成立,則稱是上的有界函數,其中稱為函數的上界,已知函數(Ⅰ)若是奇函數,求的值(Ⅱ)當時,求函數在上的值域,判斷函數在上是否為有界函數,并說明理由(Ⅲ)若函數在上是以為上界的函數,求實數的取值范圍21.為宣傳2022年北京冬奧會,某公益廣告公司擬在一張矩形海報紙(記為矩形,如圖)上設計三個等高的宣傳欄(欄面分別為一個等腰三角形和兩個全等的直角梯形),宣傳欄(圖中陰影部分)的面積之和為.為了美觀,要求海報上所有水平方向和豎直方向的留空寬度均為.設直角梯形的高為.(1)當時,求海報紙的面積;(2)為節約成本,應如何選擇海報紙的尺寸,可使用紙量最少(即矩形的面積最小)?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據余弦函數的定義有,結合是第二象限角求解即可.【詳解】由題設,,整理得,又是第二象限角,所以.故選:C2、A【解析】先由已知條件求出,然后利用公式求解即可【詳解】因為,所以,在中,,所以,所以,所以這個弧田面積為,故選:A3、B【解析】先表示出扇形的面積得到圓心角與半徑的關系,再利用基本不等式求出周長的最小值,進而求出圓心角的度數.【詳解】設扇形的圓心角為,半徑為,則由題意可得∴,當且僅當時,即時取等號,∴當扇形的圓心角為2時,扇形的周長取得最小值32.故選:B.4、B【解析】先由,得到,再由充分條件與必要條件的概念,即可得出結果.【詳解】由解得,所以由“”能推出“”,反之,不能推出;因此“”是“”必要不充分條件.故選:B.【點睛】本題主要考查命題的必要不充分條件的判定,熟記充分條件與必要條件的概念即可,屬于常考題型.5、C【解析】根據余弦二倍角公式即可計算求值.【詳解】∵=,∴,∴.故選:C.6、C【解析】根據對數函數的單調性,結合二次根式的性質進行求解即可.【詳解】由,故選:C7、D【解析】利用對數函數的單調性,即可容易求得結果.【詳解】因為是單調減函數,故等價于故選:D【點睛】本題考查利用對數函數的單調性解不等式,屬基礎題.8、C【解析】解一元二次不等式,求出集合B,解得集合A,根據集合的交集運算求得答案.【詳解】由題意解得:,故,或,所以,故選:C9、A【解析】根據題意可得1,是方程的兩根,從而得到的關系,然后再解不等式從而得到答案.【詳解】由題意可得,且1,是方程的兩根,為方程的根,,則不等式可化為,即,不等式的解集為故選:A10、B【解析】根據零點存在性定理,計算出區間端點的函數值即可判斷;【詳解】解:因為,在上是連續函數,且,即在上單調遞增,,,,所以在上存在一個零點.故選:.【點睛】本題考查函數的零點的范圍,注意運用零點存在定理,考查運算能力,屬于基礎題二、填空題:本大題共6小題,每小題5分,共30分。11、(1);(2)和【解析】(1)根據降冪公式與輔助角公式化簡函數解析式,然后由題意求解,從而求解出解析式;(2)根據(1)中的解析式,利用整體法代入化簡計算函數的單調減區間,再由,給賦值,求出單調減區間.【小問1詳解】化簡函數解析式得,因為圖像的兩條相鄰對稱軸之間的距離為,即,且函數最大值為,所以且,得,所以函數解析式為.【小問2詳解】由(1)得,,得,因為,所以函數的單調減區間為和12、【解析】,該函數的定義域為,又,故為上的奇函數,所以等價于,又為上的單調減函數,,也即是,解得,填點睛:解函數不等式時,要注意挖掘函數的奇偶性和單調性13、160【解析】設底面長方形的長寬分別為和,先求側面積,進一步求出總的造價,利用基本不等式求出最小值.【詳解】設底面長方形的長寬分別為和,則,所以總造價當且僅當的時區到最小值則該容器的最低總造價是160.故答案為:160.14、0【解析】先令t=cosx,則t∈-1,1,再將問題轉化為關于【詳解】解:令t=cosx,則則f(t)=t則函數f(t)在-1,1上為減函數,則f(t)即函數y=cos2x-2故答案為:0.15、②③##③②【解析】畫出的圖象,即可判斷四個選項的正誤.【詳解】畫出函數的圖象,如圖所示,可以看出函數的圖象不是一條直線,故A錯誤;函數f(x)的值域為,故②正確;方程有無數個解,③正確;函數是分段函數,且函數不是R上的增函數,故④錯誤.故答案為:②③16、4、5、6【解析】根據偶函數,是正整數,推斷出的取值范圍,相鄰的兩個的距離是,依照題意列不等式組,求出的值【詳解】由題意得.∵為偶函數,是正整數,∴,∵對任意實數,滿足中的元素不超過兩個,且存在實數使中含有兩個元素,∴中任意相鄰兩個元素的間隔必小于1,任意相鄰的三個元素的間隔之和必大于1∴,解得,又,∴.答案:【點睛】本題考查了正弦函數的奇偶性和周期性,以及根據集合的運算關系,求參數的值,關鍵是理解的意義,強調抽象思維與靈活應變的能力三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據的解集為,可得1,2即為方程的兩根,根據韋達定理,可得b,c的表達式,根據有兩個相等的實數根.可得該方程,即可求得a的值,即可得答案;(2)由題意得使成立,則只需,利用基本不等式,即可求得答案.【詳解】(1)因為的解集為,所以1,2即為方程的兩根,由韋達定理得,且,解得,,又方程有兩個相等實數根,所以,即,,解得,所以,所以;(2)由(1)可得,,所以,則,,又,當且僅當,即x=2時等號成立,所以,使成立,等價為成立,所以.【點睛】已知解集求一元二次不等式參數時,關鍵是靈活應用韋達定理,進行求解,處理存在性問題時,需要,若處理恒成立問題時,需要,需認真區分問題,再進行解答,屬中檔題.18、(1);(2).【解析】(1)利用二次函數單調性進行求解即可;(2)利用換元法、構造函數法,結合二次函數的性質進行求解即可.【小問1詳解】當時,函數的對稱軸為:,因此函數當時,單調遞增,故所以;【小問2詳解】由(1)知,不等式,可化為:即,令,,令,.19、(1)具有性質;不具有性質;(2)見解析;(3)【解析】(1)根據定義即可求得具有性質;根據特殊值即可判斷不具有性質;(2)利用反證法,假設二次函數不是偶函數,根據題意推出與題設矛盾即可證明;(3)根據題意得到,再根據具有性質,得到,解不等式即可.【詳解】解:(1),定義域為,則有,顯然存在正實數,對任意的,總有,故具有性質;,定義域為,則,當時,,故不具有性質;(2)假設二次函數不是偶函數,設,其定義域為,即,則,易知,是無界函數,故不存在正實數k,使得函數具有性質,與題設矛盾,故是偶函數;(3)的定義域為,,具有性質,即存在正實數k,對任意的,總有,即,即,即,即,即,即,通過對比解得:,即.【點睛】方法點睛:應用反證法時必須先否定結論,把結論的反面作為條件,且必須根據這一條件進行推理,否則,僅否定結論,不從結論的反面出發進行推理,就不是反證法.所謂矛盾主要指:①與已知條件矛盾;②與假設矛盾;③與定義、公理、定理矛盾;④與公認的簡單事實矛盾;⑤自相矛盾.20、(1)(2)是(3)或【解析】(1)根據奇函數定義得,解得的值(2)先分離得再根據單調性求值域,最后根據值域判定是否成立(3)轉化為不等式恒成立,再分離變量得最值,最后根據最值求實數的取值范圍試題解析:解:()由是奇函數,則,得,即,∴,()當時,∵,∴,∴,滿足∴在上為有界函數()若函數在上是以為上界的有界函數,則有在上恒成立∴,即,∴,化簡得:,即,上面不等式組對一切都成立,故,∴或21、(1)(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論