




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆山西省太原市六十六中高二上數學期末教學質量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.古希臘數學家阿波羅尼斯的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數且的點的軌跡是圓,后人將之稱為阿波羅尼斯圓.現有橢圓為橢圓長軸的端點,為橢圓短軸的端點,,分別為橢圓的左右焦點,動點滿足面積的最大值為面積的最小值為,則橢圓的離心率為()A. B.C. D.2.若a,b,c為實數,且,則以下不等式成立的是()A. B.C. D.3.一條光線從點射出,經軸反射后與圓相切,則反射光線所在直線的斜率為()A.或 B.或C.或 D.或4.已知M、N為橢圓上關于短軸對稱的兩點,A、B分別為橢圓的上下頂點,設、分別為直線的斜率,則的最小值為()A. B.C. D.5.中國歷法推測遵循以測為輔,以算為主的原則.例如《周髀算經》里對二十四節氣的晷影長的記錄中,冬至和夏至的晷影長是實測得到的,其它節氣的晷影長則是按照等差數列的規律計算得出的.二十四節氣中,從冬至到夏至的十三個節氣依次為:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種、夏至.已知《周髀算經》中記錄某年的冬至的晷影長為13尺,夏至的晷影長是1.48尺,按照上述規律,那么《周髀算經》中所記錄的立夏的晷影長應為()A.尺 B.尺C.尺 D.尺6.雙曲線與橢圓的焦點相同,則等于()A.1 B.C.1或 D.27.青少年視力被社會普遍關注,為了解他們的視力狀況,經統計得到圖中右下角名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個位數,葉表示十分位數.如果執行如圖所示的算法程序,那么輸出的結果是()A. B.C. D.8.若,(),則,的大小關系是A. B.C. D.,的大小由的取值確定9.第24屆冬季奧林匹克運動會,將在2022年2月4日在中華人民共和國北京市和張家口市聯合舉行.這是中國歷史上第一次舉辦冬季奧運會,北京成為奧運史上第一個舉辦夏季奧林匹克運動會和冬季奧林匹克運動會的城市.同時中國也成為第一個實現奧運“全滿貫”(先后舉辦奧運會、殘奧會、青奧會、冬奧會、冬殘奧會)國家.根據規劃,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結構鳥瞰圖如圖所示,內外兩圈的鋼骨架是離心率相同的橢圓,若由外層橢圓長軸一端點和短軸一端點分別向內層橢圓引切線,(如圖),且兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.10.已知圓與直線至少有一個公共點,則的取值范圍為()A. B.C. D.11.已知拋物線上一點到其焦點的距離為5,雙曲線的左頂點為A,若雙曲線的一條漸近線與直線AM平行,則實數n的值是()A. B.C. D.12.“”是“直線和直線垂直”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知數列中,,且數列為等差數列,則_____________.14.拋物線()上的一點到其焦點F的距離______.15.函數的圖象在處的切線方程為,則___________.16.數據:1,1,3,4,6的方差是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2021年10月16日,搭載“神舟十三號”的火箭發射升空,有很多民眾通過手機、電視等方式觀看有關新聞.某機構將關注這件事的時間在2小時以上的人稱為“天文愛好者”,否則稱為“非天文愛好者”,該機構通過調查,從參與調查的人群中隨機抽取100人進行分析,得到下表(單位:人):天文愛好者非天文愛好者合計女203050男351550合計5545100(1)能否有99%的把握認為“天文愛好者”或“非天文愛好者”與性別有關?(2)現從抽取的女性人群中,按“天文愛好者”和“非天文愛好者”這兩種類型進行分層抽樣抽取5人,然后再從這5人中隨機選出3人,記其中“天文愛好者”的人數為X,求X的分布列和數學期望附:,其中n=a+b+c+d0.100.050.0100.0050.0012.7063.8416.6357.87910.82818.(12分)如圖1,在中,,,,分別是,邊上的中點,將沿折起到的位置,使,如圖2(1)求點到平面距離;(2)在線段上是否存在一點,使得平面與平面夾角的余弦值為.若存在,求出長;若不存在,請說明理由19.(12分)設P是拋物線上一個動點,F為拋物線的焦點.(1)若點P到直線距離為,求的最小值;(2)若,求的最小值.20.(12分)分別求滿足下列條件的曲線方程(1)以橢圓的短軸頂點為焦點,且離心率為的橢圓方程;(2)過點,且漸近線方程為的雙曲線的標準方程21.(12分)已知函數.(1)求曲線在點處的切線方程;(2)求在區間上的最值.22.(10分)一杯100℃的開水放在室溫25℃的房間里,1分鐘后水溫降到85℃,假設每分鐘水溫變化量和水溫與室溫之差成正比(1)分別求2分鐘,3分鐘后的水溫;(2)記n分鐘后的水溫為,證明:是等比數列,并求出的通項公式;(3)當水溫在40℃到55℃之間時(包括40℃和55℃),為最適合飲用的溫度,則在水燒開后哪個時間段飲用最佳.(參考數據:)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題可得動點M的軌跡方程,可得,,即求.【詳解】設,,由,可得=2,化簡得.∵△MAB面積的最大值為面積的最小值為,∴,,∴,即,∴故選:A2、C【解析】利用不等式的性質直接推導和取值驗證相結合可解.【詳解】取可排除ABD;由不等式的性質易得C正確.故選:C3、C【解析】點關于軸的對稱點為,由反射光線的性質,可設反射光線所在直線的方程為:,再利用直線與圓相切,可知圓心到直線的距離等于半徑,由此即可求出結果【詳解】點關于軸的對稱點為,設反射光線所在直線的方程為:,化為因為反射光線與圓相切,所以圓心到直線的距離,可得,所以或故選:C4、A【解析】利用為定值即可獲解.【詳解】設則又,所以所以當且僅當,即,取等故選:A5、B【解析】根據等差數列定義求得公差,再求解立夏的晷影長在數列中所對應的項即可【詳解】設從冬至到夏至的十三個節氣依次為等差數列的前13項,則所以公差為,則立夏的晷影長應為(尺)故選:B6、A【解析】根據雙曲線方程形式確定焦點位置,再根據半焦距關系列式求參數.【詳解】因為雙曲線的焦點在軸上,所以橢圓焦點在軸上,依題意得解得.故選:A7、B【解析】依題意該程序框圖是統計這12名青少年視力小于等于的人數,結合莖葉圖判斷可得;【詳解】解:根據程序框圖可知,該程序框圖是統計這12名青少年視力小于等于的人數,由莖葉圖可知視力小于等于的有5人,故選:B8、A【解析】∵且,∴,又,∴,故選A.9、B【解析】分別設內外層橢圓方程為、,進而設切線、分別為、,聯立方程組整理并結合求、關于a、b、m的關系式,再結合已知得到a、b的齊次方程求離心率即可.【詳解】若內層橢圓方程為,由離心率相同,可設外層橢圓方程為,∴,設切線為,切線為,∴,整理得,由知:,整理得,同理,,可得,∴,即,故.故選:B.【點睛】關鍵點點睛:根據內外橢圓的離心率相同設橢圓方程,并寫出切線方程,聯立方程結合及已知條件,得到橢圓參數的齊次方程求離心率.10、C【解析】利用點到直線距離公式求出圓心到直線的距離范圍,從而求出的取值范圍.【詳解】圓心到直線的距離,當且僅當時等號成立,故只需即可.故選:C11、C【解析】首先根據拋物線焦半徑公式得到,從而得到,再根據曲線的一條漸近線與直線AM平行,斜率相等求解即可.【詳解】由題知:,解得,拋物線.雙曲線的左頂點為,,因為雙曲線的一條漸近線與直線平行,所以,解得.故選:C12、A【解析】根據直線垂直求出值即可得答案.【詳解】解:若直線和直線垂直,則,解得或,則“”是“直線和直線垂直”的充分非必要條件.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意得:考點:等差數列通項14、【解析】將點坐標代入方程中可求得拋物線的方程,從而可得到焦點坐標,進而可求出【詳解】解:為拋物線上一點,即有,,拋物線的方程為,焦點為,即有.故答案為:5.15、【解析】根據導數的幾何意義可得,根據切點在切線上可得.【詳解】因為切線的斜率為,所以,又切點在切線上,所以,所以,所以.故答案為:.16、##3.6【解析】先計算平均數,再計算方差.【詳解】該組數據的平均數為,方差為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)有(2)分布列見解析,【解析】(1)依題意由列聯表計算出卡方,與參考數值比較,即可判斷;(2)按照分層抽樣得到有2人為“天文愛好者”,有3人為“非天文愛好者”,記“天文愛好者”的人數為X,則X的可能值為0,1,2,即可求出所對應的概率,從而得到分布列與數學期望;【小問1詳解】解:由題意,所以有99%的把握認為“天文愛好者”或“非天文愛好者”與性別有關.【小問2詳解】解:抽取的100人中女性人群有50人,其中“天文愛好者”有20人,“非天文愛好者”有30人,所以按分層抽樣在50個女性人群中抽取5人,則有2人為“天文愛好者”,有3人為“非天文愛好者”再從這5人中隨機選出3人,記其中“天文愛好者”的人數為X,則X的可能值為0,1,2,∴,,,X的分布列如下表:X012P18、(1)(2)存在,【解析】(1)根據題意分別由已知條件計算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標系,設,然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結果【小問1詳解】在中,,因為,分別是,邊上的中點,所以∥,,所以,所以,因為,所以平面,所以平面,因為平面,所以,所以,因為平面,平面,所以平面平面,因為,所以,因為,所以是等邊三角形,取的中點,連接,則,,因為平面平面,平面平面,平面,所以平面,在中,,所以邊上的高為,所以,在梯形中,,設點到平面的距離為,因為,所以,所以,得,所以點到平面的距離為【小問2詳解】由(1)可知平面,,所以以為原點,建立如圖所示的空間直角坐標系,則,設,則,設平面的法向量為,則,令,則,設平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以19、(1);(2)4.【解析】(1)利用拋物線的定義可知,將問題問題轉化為求的最小值,即求.(2)判斷點B在拋物線的內部,過B作垂直準線于點Q,交拋物線于點,利用拋物線的定義求解即可.【詳解】解析(1)依題意,拋物線的焦點為,準線方程為.由已知及拋物線的定義,可知,于是問題轉化為求的最小值.由平面幾何知識知,當F,P,A三點共線時,取得最小值,最小值為,即的最小值為.(2)把點B的橫坐標代入中,得,因為,所以點B在拋物線的內部.過B作垂直準線于點Q,交拋物線于點(如圖所示).由拋物線的定義,可知,則,所以的最小值為4.【點睛】本題考查了拋物線的定義,理解定義是解題的關鍵,屬于基礎題.20、(1)(2)【解析】(1)由題意得出的值后寫橢圓方程(2)待定系數法設方程,由題意列方程求解【小問1詳解】的短軸頂點為(0,-3),(0,3),∴所求橢圓的焦點在y軸上,且c=3又,∴a=6.∴∴所求橢圓方程為【小問2詳解】根據雙曲線漸近線方程為,可設雙曲線的方程,把代入得m=1.所以雙曲線的方程為21、(1)(2)最小值為0,最大值為4【解析】(1)利用導數求得切線方程.(2)結合導數求得在區間上的最值.【小問1詳解】,所以曲線在點處的切線方程為.【小問2詳解】,所以在區間遞增;在區間遞減,,所以在區間上的最小值為,最大值為.22、(1)2分鐘的水溫為℃,3分鐘后的水溫℃;(2)證明見解析,,;(3)在水燒開后4到7分鐘飲用最佳.【解析】(1)根據給定條件設第n分鐘后的水溫為,探求出與的關系即可計算作答.(2)利用(1)的信息,列式變形、推導即可得證,進而求出的通項公式.(3)由(2)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 交通噪聲屏障工程規劃設計方案(模板范文)
- 心理護理教學課件
- 重慶市黔江中學2022屆高三上學期8月考試數學題 含解析
- 山西省朔州市懷仁市第九中學高中部2023-2024學年高一上學期11月期中數學 無答案
- 大連外國語大學《非線性編輯I》2023-2024學年第二學期期末試卷
- 重慶航天職業技術學院《野生動物資源調查與保護》2023-2024學年第二學期期末試卷
- 衡陽幼兒師范高等專科學校《集成電路設計實驗》2023-2024學年第二學期期末試卷
- 甘肅建筑職業技術學院《控制工程與測試技術》2023-2024學年第二學期期末試卷
- 寧波大學科學技術學院《室內設計三》2023-2024學年第二學期期末試卷
- 四川應用技術職業學院《財經應用文》2023-2024學年第二學期期末試卷
- 商超零售路在何方
- 設計變更、工程指令、現場簽證管理辦法(修訂)
- 生態修復施工組織設計
- 道路堆場施工方案
- 河南省普通高校招生考生體格檢查表
- 【總平施工】室外總平施工組織設計
- 大連市住宅室內裝修合同范本
- 公司組織架構圖模板可編輯
- 施工現場安全管理網絡圖(共1頁)
- 代理費監理費費用計算工具(Excel)自帶公式
- 《鵝養殖技術》PPT課件
評論
0/150
提交評論