浙江省天略外國語學校2025屆數學高二上期末綜合測試試題含解析_第1頁
浙江省天略外國語學校2025屆數學高二上期末綜合測試試題含解析_第2頁
浙江省天略外國語學校2025屆數學高二上期末綜合測試試題含解析_第3頁
浙江省天略外國語學校2025屆數學高二上期末綜合測試試題含解析_第4頁
浙江省天略外國語學校2025屆數學高二上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省天略外國語學校2025屆數學高二上期末綜合測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.【2018江西撫州市高三八校聯考】已知雙曲線(,)與拋物線有相同的焦點,且雙曲線的一條漸近線與拋物線的準線交于點,則雙曲線的離心率為()A. B.C. D.2.將上各點的縱坐標不變,橫坐標變為原來的2倍,得到曲線C,若直線l與曲線C交于A,B兩點,且AB中點坐標為M(1,),那么直線l的方程為()A. B.C. D.3.橢圓的焦點坐標為()A., B.,C., D.,4.已知直線過點,,則該直線的傾斜角是()A. B.C. D.5.已知點,,則經過點且經過線段AB的中點的直線方程為()A. B.C. D.6.已知數列為等差數列,且成等比數列,則的前6項的和為A.15 B.C.6 D.37.對于實數a,b,c,下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則8.2018年,倫敦著名的建筑事務所steynstudio在南非完成了一個驚艷世界的作品一一雙曲線建筑的教堂,白色的波浪形屋頂像翅膀一樣漂浮,建筑師通過雙曲線的設計元素賦予了這座教堂輕盈,極簡和雕塑般的氣質,如圖.若將此大教堂外形弧線的一段近似看成焦點在y軸上的雙曲線下支的一部分,且該雙曲線的上焦點到下頂點的距離為18,到漸近線距離為12,則此雙曲線的離心率為()A. B.C. D.9.給出如下四個命題正確的是()①方程表示的圖形是圓;②橢圓的離心率;③拋物線的準線方程是;④雙曲線的漸近線方程是A.③ B.①③C.①④ D.②③④10.已知拋物線:的焦點為,為上一點且在第一象限,以為圓心,為半徑的圓交的準線于,兩點,且,,三點共線,則()A.2 B.4C.6 D.811.設分別是橢圓的左、右焦點,P是C上的點,則的周長為()A.13 B.16C.20 D.12.已知為虛數單位,復數是純虛數,則()A. B.4C.3 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓()中,成等比數列,則橢圓的離心率為_______.14.已知拋物線C:y2=2px過點P(1,1):①點P到拋物線焦點的距離為②過點P作過拋物線焦點的直線交拋物線于點Q,則△OPQ的面積為③過點P與拋物線相切的直線方程為x-2y+1=0④過點P作兩條斜率互為相反數的直線交拋物線于M,N兩點,則直線MN的斜率為定值其中正確的是________.15.已知斜率為1的直線經過橢圓的左焦點,且與橢圓交于,兩點,若橢圓上存在點,使得的重心恰好是坐標原點,則橢圓的離心率______.16.將4名志愿者分配到3個不同的北京冬奧場館參加接待工作,每個場館至少分配一名志愿者的方案種數為________.(用數字作答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某種機械設備隨著使用年限的增加,它的使用功能逐漸減退,使用價值逐年減少,通常把它使用價值逐年減少的“量”換算成費用,稱之為“失效費”.某種機械設備的使用年限(單位:年)與失效費(單位:萬元)的統計數據如下表所示:使用年限(單位:年)1234567失效費(單位:萬元)2.903.303.604.404.805.205.90(1)由上表數據可知,可用線性回歸模型擬合與關系.請用相關系數加以說明;(精確到0.01)(2)求出關于的線性回歸方程,并估算該種機械設備使用8年的失效費參考公式:相關系數線性回歸方程中斜率和截距最小二乘估計計算公式:,參考數據:,,18.(12分)在實驗室中,研究某種動物是否患有某種傳染疾病,需要對其血液進行檢驗.現有份血液樣本,有以下兩種檢驗方式:一是逐份檢驗,則需要檢驗n次;二是混合檢驗,將其中k(且)份血液樣本分別取樣混合在一起檢驗,如果檢驗結果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗一次就夠了;如果檢驗結果為陽性,為了明確這k份究竟哪些為陽性,就需要對它們再次取樣逐份檢驗,那么這k份血液的檢驗次數共為次.假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的.且每份樣本是陽性結果的概率為(1)假設有5份血液樣本,其中只有2份血液樣本為陽性,若采用逐份檢驗方式,求恰好經過3次檢驗就能把陽性樣本全部檢測出來的概率;(2)假設有4份血液樣本,現有以下兩種方案:方案一:4個樣本混合在一起檢驗;方案二:4個樣本平均分為兩組,分別混合在一起檢驗若檢驗次數的期望值越小,則方案越優現將該4份血液樣本進行檢驗,試比較以上兩個方案中哪個更優?19.(12分)如圖是一個正三棱柱(以為底面)被一平面所截得到的幾何體,截面為ABC.已知,,M為AB中點.(1)證明:平面;(2)求此幾何體的體積.20.(12分)已知直線l經過兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0的交點,且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過點(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長為,求圓C的標準方程21.(12分)已知p:關于x的方程至多有一個實數解,.(1)若命題p為真命題,求實數a的取值范圍;(2)若p是q的充分不必要條件,求實數m的取值范圍.22.(10分)已知橢圓C的中心在原點,焦點在x軸上,長軸長為4,且點在橢圓上(1)經過點M(1,)作一直線交橢圓于AB兩點,若點M為線段AB的中點,求直線的斜率;(2)設橢圓C的上頂點為P,設不經過點P的直線與橢圓C交于C,D兩點,且,求證:直線過定點

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由題意可知,拋物線的焦點坐標為,準線方程為,由在拋物線的準線上,則,則,則焦點坐標為,所以,則,解得,雙曲線的漸近線方程是,將代入漸近線的方程,即,則雙曲線的離心率為,故選C.2、A【解析】先根據題意求出曲線C的方程,然后利用點差法求出直線l的斜率,從而可求出直線方程【詳解】設點為曲線C上任一點,其在上對應在的點為,則,得,所以,所以曲線C的方程為,設,則,兩方程相減整理得,因為AB中點坐標為M(1,),所以,即,所以,所以,所以直線l的方程為,即,故選:A3、A【解析】由題方程化為橢圓的標準方程求出c,則橢圓的焦點坐標可求【詳解】由題得方程可化為,所以所以焦點為故選:A.4、C【解析】根據直線的斜率公式即可求得答案.【詳解】設該直線的傾斜角為,該直線的斜率,即.故選:C5、C【解析】求AB的中點坐標,根據直線所過的兩點坐標求直線方程即可.【詳解】由已知,AB中點為,又,∴所求直線斜率為,故直線方程為,即故選:C.6、C【解析】利用成等比數列,得到方程2a1+5d=2,將其整體代入{an}前6項的和公式中即可求出結果【詳解】∵數列為等差數列,且成等比數列,∴,1,成等差數列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{an}前6項的和為2a1+5d)=故選C【點睛】本題考查等差數列前n項和求法,是基礎題,解題時要認真審題,注意等差數列、等比數列的性質的合理運用7、D【解析】判斷不等式的真假,就是要考慮在不等式的變形過程中是否遵守不等式變形的規則.【詳解】若,令,,,,,故A錯誤;若,令c=0,則,故B錯誤;若,令a=-1,b=-2,,,故C錯誤;∵,故,根據不等式運算規則,在不等式的兩邊同時乘以或除以一個正數,不等式的方向不變,故D正確.故選:D.8、A【解析】設出雙曲線的方程,根據已知條件列出方程組即可求解.【詳解】設雙曲線的方程為,由雙曲線的上焦點到下頂點的距離為18,即,上焦點的坐標為,其中一條漸近線為,上焦點到漸近線的距離為,則,解得,,即,故選:.9、A【解析】對選項①,根據圓一般方程求解即可判斷①錯誤,對選項②,求出橢圓離心率即可判斷②錯誤,對③,求出拋物線漸近線即可判斷③正確,對④,求出雙曲線漸近線方程即可判斷④錯誤?!驹斀狻繉τ冖龠x項,,,故①錯誤;對于②選項,由題知,所以,所以離心率,故②錯誤;對于③選項,拋物線化為標準形式得拋物線,故準線方程是,故③正確;對于④選項,雙曲線化為標準形式得,所以,焦點在軸上,故漸近線方程是,故④錯誤.故選:A10、B【解析】根據,,三點共線,結合點到準線的距離為2,得到,再利用拋物線的定義求解.【詳解】如圖所示:∵,,三點共線,∴是圓的直徑,∴,軸,又為的中點,且點到準線的距離為2,∴,由拋物線的定義可得,故選:B.11、B【解析】利用橢圓的定義及即可得到答案.【詳解】由橢圓的定義,,焦距,所以的周長為.故選:B12、C【解析】化簡復數得,由其為純虛數求參數a,進而求的模即可.【詳解】由純虛數,∴,解得:,則,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據成等比數列,可得,再根據的關系可得,然后結合的自身范圍解方程即可求出【詳解】∵成等比數列,∴,∴,∴,∴,又,∴故答案為:【點睛】本題主要考查橢圓的離心率的計算以及等比數列定義的應用,意在考查學生的數學運算能力,屬于基礎題14、②③④【解析】由拋物線過點可得拋物線的方程,求出焦點的坐標及準線方程,由拋物線的性質可判斷①;求出直線的方程與拋物線聯立切線的坐標,進而求出三角形的面積,判斷②;設直線方程為y-1=k(x-1),與y2=x聯立求得斜率,進而可得在處的切線方程,從而判斷③;設直線的方程為拋物線聯立求出的坐標,同理求出的坐標,進而求出直線的斜率,從而可判斷④【詳解】解:由拋物線過點,所以,所以,所以拋物線的方程為:;可得拋物線的焦點的坐標為:,,準線方程為:,對于①,由拋物線的性質可得到焦點的距離為,故①錯誤;對于②,可得直線的斜率,所以直線的方程為:,代入拋物線的方程可得:,解得,所以,故②正確;對于③,依題意斜率存在,設直線方程為y-1=k(x-1),與y2=x聯立,得:ky2-y+1-k=0,=1-4k(1-k)=0,4k2-4k+1=0,解得k=,所以切線方程為x-2y+1=0,故③正確;對于④,設直線的方程為:,與拋物線聯立可得,所以,所以,代入直線中可得,即,,直線的方程為:,代入拋物線的方程,可得,代入直線的方程可得,所以,,所以為定值,故④正確故答案為:②③④.15、【解析】設點,,坐標分別為,則根據題意有,分別將點,,的坐標代入橢圓方程得,然后聯立直線與橢圓方程,利用韋達定理得到和的值,代入得到關于的齊次式,然后解出離心率.【詳解】設,,坐標分別為,因為的重心恰好是坐標原點,則,則,代入橢圓方程可得,其中,所以……①因為直線的斜率為,且過左焦點,則的方程為:,聯立方程消去可得:,所以,……②所以……③,將②③代入①得,從而.故答案為:【點睛】本題考查橢圓的離心率求解問題,難度較大.解答時,注意,,三點坐標之間的關系,注意韋達定理在解題中的運用.16、36【解析】先將4人分成2、1、1三組,再安排給3個不同的場館,由分步乘法計數原理可得.【詳解】將4人分到3個不同的體育場館,要求每個場館至少分配1人,則必須且只能有1個場館分得2人,其余的2個場館各1人,可先將4人分為2、1、1的三組,有種分組方法,再將分好的3組對應3個場館,有種方法,則共有種分配方案.故答案為:36三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析;(2);失效費為6.3萬元【解析】(1)根據相關系數公式計算出相關系數可得結果;(2)根據公式求出和可得關于的線性回歸方程,再代入可求出結果.【詳解】(1)由題意,知,,∴結合參考數據知:因為與的相關系數近似為0.99,所以與的線性相關程度相當大,從而可以用線性回歸模型擬合與的關系(2)∵,∴∴關于的線性回歸方程為,將代入線性回歸方程得萬元,∴估算該種機械設備使用8年的失效費為6.3萬元18、(1)(2)方案一更優【解析】(1)分兩類,由古典概型可得;(2)分別求出兩種方案的數學期望,然后比較可知.【小問1詳解】恰好經過3次檢驗就能把陽性樣本全部檢測出來分為兩種情況:第一種:前兩次檢測中出現一次陽性一次陰性且第三次為陽性第二種:前三次檢測均陰性,所以概率為【小問2詳解】方案一:混在一起檢驗,記檢驗次數為X,則X的取值范圍是,,,方案二:每組的兩個樣本混合在一起檢驗,若結果呈陰性,則檢驗次數為1,其概率為,若結果呈陽性,則檢驗次數為3,其概率為設檢驗次數為隨機變量Y,則Y的取值范圍是,,,,,所以,方案一更優19、(1)證明見解析(2)【解析】(1)取的中點,連接,,可得四邊形為平行四邊形,從而可得,然后證明平面,從而可證明.(2)過作截面平面,分別交,于,,連接,作于,由所求幾何體體積為從而可得答案.【小問1詳解】如圖,取的中點,連接,,因為,分別是,的中點.所以且又因為,,所以且,故四邊形為平行四邊形,所以.因為正三角形,是的中點,所以,又因為平面,所以,又,所以平面又,所以平面.【小問2詳解】如圖,過作截面平面,分別交,于,,連接,作于,因為平面平面,所以,結合直三棱柱的性質,則平面因為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論