




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
云南省馬關(guān)縣一中2025屆數(shù)學高一上期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則x等于A. B.C. D.2.農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長勢情況,從種植有甲、乙兩種麥苗的兩塊試驗田中各抽取6株麥苗測量株高,得到的數(shù)據(jù)如下(單位:cm):甲:9,10,11,12,10,20;乙:8,14,13,10,12,21.根據(jù)所抽取的甲、乙兩種麥苗的株高數(shù)據(jù),給出下面四個結(jié)論,其中正確的結(jié)論是()A.甲種麥苗樣本株高的平均值大于乙種麥苗樣本株高的平均值B.甲種麥苗樣本株高的極差小于乙種麥苗樣本株高的極差C.甲種麥苗樣本株高的75%分位數(shù)為10D.甲種麥苗樣本株高的中位數(shù)大于乙種麥苗樣本株高的中位數(shù)3.已知函數(shù),是函數(shù)的一個零點,且是其圖象的一條對稱軸.若是的一個單調(diào)區(qū)間,則的最大值為A.18 B.17C.15 D.134.函數(shù)的部分圖象是()A. B.C. D.5.以下命題(其中,表示直線,表示平面):①若,,則;②若,,則;③若,,則;④若,,則其中正確命題的個數(shù)是A.0個 B.1個C.2個 D.3個6.若關(guān)于x的方程log12x=m1-mA.(0,1) B.(1,2)C.(-∞,1)∪(2,+∞) D.(-∞,0)∪(1,+∞)7.銳角三角形的內(nèi)角、滿足:,則有()A. B.C. D.8.設,則與終邊相同的角的集合為A. B.C. D.9.已知棱長為1的正方體的俯視圖是一個面積為1的正方形,則該正方體的正視圖的面積可能等于A. B.C. D.210.已知是以為圓心的圓上的動點,且,則A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,若是的充分不必要條件,則的取值范圍為______12.已知集合,,則=______13.已知,則_____.14.已知正數(shù)、滿足,則的最大值為_________15.已知一個扇形的弧所對的圓心角為54°,半徑r=20cm,則該扇形的弧長為_____cm16.已知函數(shù)則不等式的解集是_____________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1)若,求的范圍;(2)若,,且,,求.18.已知函數(shù)是上的奇函數(shù).(1)求實數(shù)a的值;(2)若關(guān)于的方程在區(qū)間上恒有解,求實數(shù)的取值范圍.19.已知,是方程的兩根.(1)求實數(shù)的值;(2)求的值;(3)求的值.20.已知函數(shù).(1)求的定義域;(2)若函數(shù),且對任意的,,恒成立,求實數(shù)a的取值范圍.21.定義在D上的函數(shù),如果滿足:存在常數(shù),對任意,都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界.(1)證明:在上有界函數(shù);(2)若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】把已知等式變形,可得,進一步得到,則x值可求【詳解】由題意,可知,可得,即,所以,解得故選A【點睛】本題主要考查了有理指數(shù)冪與根式的運算,其中解答中熟記有理指數(shù)冪和根式的運算性質(zhì),合理運算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎題.2、B【解析】對A,由平均數(shù)求法直接判斷即可;由極差概念可判斷B,結(jié)合百分位數(shù)概念可求C;將甲乙兩組數(shù)據(jù)排序,可判斷D.【詳解】甲組數(shù)據(jù)的平均數(shù)為9+10+11+12+10+206=12,乙組數(shù)據(jù)的平均數(shù)為8+14+13+10+12+216甲種麥苗樣本株高的極差為11,乙種麥苗樣本株高的極差為13,故B正確;6×0.75=4.5,故甲種麥苗樣本株高的75%分位數(shù)為第5位數(shù),為12,故C錯誤;甲種麥苗樣本株高的中位數(shù)為10.5,乙種麥苗樣本株高的中位數(shù)為12.5,故D錯誤.故選:B3、D【解析】由已知可得,結(jié)合,得到(),再由是的一個單調(diào)區(qū)間,可得T,即,進一步得到,然后對逐一取值,分類求解得答案【詳解】由題意,得,∴,又,∴()∵是一個單調(diào)區(qū)間,∴T,即,∵,∴,即①當,即時,,,∴,,∵,∴,此時在上不單調(diào),∴不符合題意;②當,即時,,,∴,,∵,∴,此時在上不單調(diào),∴不符合題意;③當,即時,,,∴,∵,∴,此時在上單調(diào)遞增,∴符合題意,故選D【點睛】本題主要考查正弦型函數(shù)的單調(diào)性,對周期的影響,零點與對稱軸之間的距離與周期的關(guān)系,考查分類討論的數(shù)學思想方法,考查邏輯思維能力與推理運算能力,結(jié)合選項逐步對系數(shù)進行討論是解決該題的關(guān)鍵,屬于中檔題.4、C【解析】首先判斷函數(shù)的奇偶性,即可排除AD,又,即可排除B.【詳解】因為,定義域為R,關(guān)于原點對稱,又,故函數(shù)為奇函數(shù),圖象關(guān)于原點對稱,故排除AD;又,故排除B.故選:C.5、A【解析】利用線面平行和線線平行的性質(zhì)和判定定理對四個命題分別分析進行選擇【詳解】①若a∥b,b?α,則a∥α或a?α,故錯;②若a∥α,b∥α,則a,b平行、相交或異面,故②錯;③若a∥b,b∥α,則a∥α或a?α,故③錯;④若a∥α,b?α,則a、b平行或異面,故④錯正確命題個數(shù)為0個,故選A.【點睛】本題考查空間兩直線的位置關(guān)系,直線與平面的位置關(guān)系,主要考查線面平行的判定和性質(zhì).6、A【解析】由題意可得:函數(shù)y=log12x∴∴∴實數(shù)m的取值范圍是(0故選A點睛:本小題考查的是學生對函數(shù)最值的應用的知識點的掌握.本題在解答時應該先將函數(shù)y=log12x在區(qū)間(0,7、C【解析】根據(jù)三角恒等變換及誘導公式化簡變形即可.【詳解】將,變形為則,又,故,即,,因為內(nèi)角、都為銳角,則,故,即,,所以.故選:C.8、B【解析】由終邊相同的角的概念,可直接得出結(jié)果.【詳解】因為,所以與終邊相同的角為.故選B【點睛】本題主要考查終邊相同的角,熟記概念即可得出結(jié)果,屬于基礎題型.9、C【解析】如果主視圖是從垂直于正方體的面看過去,則其面積為1;如果斜對著正方體的某表面看,其面積就變大,最大時,(是正對著正方體某豎著的棱看),面積為以上表面的對角線為長,以棱長為寬的長方形,其面積為,可得主視圖面積最小是1,最大是,故選C.點睛:思考三視圖還原空間幾何體首先應深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調(diào)整.10、A【解析】根據(jù)向量投影的幾何意義得到結(jié)果即可.【詳解】由A,B是以O為圓心的圓上的動點,且,根據(jù)向量的點積運算得到=||?||?cos,由向量的投影以及圓中垂徑定理得到:||?cos即OB在AB方向上的投影,等于AB的一半,故得到=||?||?cos.故選A【點睛】本題考查向量的數(shù)量積公式的應用,以及向量投影的應用.平面向量數(shù)量積公式的應用主要有兩種形式,一是,二是,主要應用以下幾個方面:(1)求向量的夾角,(此時往往用坐標形式求解);(2)求投影,在上的投影是;(3)向量垂直則;(4)求向量的模(平方后需求).二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)不等式的解法求出的等價條件,結(jié)合充分不必要條件的定義建立不等式關(guān)系即可【詳解】由得得或,由得或,得或,若是的充分不必要條件,則即得,又,則,即實數(shù)的取值范圍是,故填:【點睛】本題主要考查充分條件和必要條件的應用,求出不等式的等價條件結(jié)合充分條件和必要條件的定義進行轉(zhuǎn)化是解決本題的關(guān)鍵,為基礎題12、{-1,1,2};【解析】=={-1,1,2}13、3【解析】利用誘導公式求出,再將所求值的式子弦化切,代值計算即得.【詳解】因,所以.故答案為:3.14、【解析】利用均值不等式直接求解.【詳解】因為且,所以,即,當且僅當,即時,等號成立,所以的最大值為.故答案為:.15、【解析】利用扇形的弧長公式求弧長即可.【詳解】由弧長公式知:該扇形的弧長為(cm).故答案為:16、【解析】分和0的大小關(guān)系分別代入對應的解析式即可求解結(jié)論.【詳解】∵函數(shù),∴當,即時,,故;當,即時,,故;∴不等式的解集是:.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用公式化簡函數(shù)解析式可得,將函數(shù)解析式代入不等式得,即可求得x的取值范圍;(2)由求得,根據(jù)的范圍求出,,從而求得,,再利用兩角差的余弦公式即可得解.【詳解】若,則,,(2)因為,所以,,因為,所以,,,【點睛】本題考查三角函數(shù)和差化積公式,兩角和與差的正弦公式,同角三角函數(shù)的平方關(guān)系,計算時注意角的取值范圍,屬于中檔題.18、(1)(2)【解析】(1)利用奇偶性可得,求出,進行檢驗即可;(2)關(guān)于的方程在區(qū)間上恒有解等價于,即的取值范圍是在區(qū)間上的值域.【詳解】(1)∵函數(shù)是上的奇函數(shù).∴,∴,當時,顯然所以f(x)為奇函數(shù),故;(2),即,∴,即的取值范圍是在區(qū)間上的值域,令,則,∴,,,又在上單調(diào)遞減,在上單調(diào)遞增,∴,即,∴實數(shù)的取值范圍.【點睛】本題考查函數(shù)的奇偶性的應用,考查函數(shù)與方程的關(guān)系,考查等價轉(zhuǎn)化思想與推理能力,屬于中檔題.19、(1);(2);(3)【解析】(1)根據(jù)方程的根與系數(shù)關(guān)系可求,,然后結(jié)合同角平方關(guān)系可求,(2)結(jié)合(1)可求,,結(jié)合同角基本關(guān)系即可求,(3)利用將式子化為齊次式,再利用同角三角函數(shù)的基本關(guān)系,將弦化切,代入可求【詳解】解:(1)由題意可知,,,∴,∴,∴,(2)方程的兩根分別為,,∵,∴,∴,,則,(3)【點睛】本題主要考查了同角三角函數(shù)關(guān)系式和萬能公式的應用,屬于基本知識的考查20、(1).(2)(2,+∞).【解析】(1)使對數(shù)式有意義,即得定義域;(2)命題等價于,如其中一個不易求得,如不易求,則轉(zhuǎn)化為恒成立,再由其它方法如分離參數(shù)法求解或由二次不等式恒成立問題求解【詳解】(1)由題可知且,所以.所以的定義域為.(2)由題易知在其定義域上單調(diào)遞增.所以在上的最大值為,對任意恒成立等價于恒成立.由題得.令,則恒成立.當時,,不滿足題意.當時,,解得,因為,所以舍去.當時,對稱軸為,當,即時,,所以;當,即時,,無解,舍去;當,即時,,所以,舍去.綜上所述,實數(shù)a的取值范圍為(2,+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025近距離沙石運輸合同樣本
- 網(wǎng)絡安全設備配置與防護題庫 (信息安全領域?qū)崙?zhàn)項目)
- 幼兒園課件-認識蔬菜
- 肺癌放療飲食護理
- 人教版小學一年級數(shù)學下冊期中試題
- 眩暈護理方案及護理常規(guī)
- 三角形全等的判定(復習)教學任務分析
- 視網(wǎng)膜毛細血管前小動脈阻塞的臨床護理
- 山東省濟寧市2025年高考模擬考試地理試題及答案(濟寧三模)
- 浙江省寧波市鎮(zhèn)海中學2025年5月第二次模擬考試語文試卷+答案
- 餡料間管理制度
- 2025年消防知識培訓
- 上海健康醫(yī)學院《SpringSpringMVCMyBais》2023-2024學年第二學期期末試卷
- 馬爾代夫旅游介紹
- 保險行業(yè)檔案管理培訓
- 無廢城市知識培訓課件
- 2025煤炭礦區(qū)水土保持監(jiān)測技術(shù)服務合同書
- 五金產(chǎn)品購銷合同清單
- 2024年全國高中數(shù)學聯(lián)賽(四川預賽)試題含答案
- 東北三省精準教學聯(lián)盟2024-2025學年高三下學期3月聯(lián)考地理試題(含答案)
- 2024北京西城區(qū)初一(下)期末道法試題和答案
評論
0/150
提交評論