




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省新余市名校2024年中考四模數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.2cos30°的值等于()A.1 B. C. D.22.人的大腦每天能記錄大約8600萬條信息,數據8600用科學記數法表示為()A.0.86×104 B.8.6×102 C.8.6×103 D.86×1023.某商品的進價為每件元.當售價為每件元時,每星期可賣出件,現需降價處理,為占有市場份額,且經市場調查:每降價元,每星期可多賣出件.現在要使利潤為元,每件商品應降價()元.A.3 B.2.5 C.2 D.54.如圖,在中,E為邊CD上一點,將沿AE折疊至處,與CE交于點F,若,,則的大小為()A.20° B.30° C.36° D.40°5.用配方法解下列方程時,配方有錯誤的是()A.化為 B.化為C.化為 D.化為6.如圖,已知,為反比例函數圖象上的兩點,動點在軸正半軸上運動,當線段與線段之差達到最大時,點的坐標是()A. B. C. D.7.已知一次函數y=﹣2x+3,當0≤x≤5時,函數y的最大值是()A.0B.3C.﹣3D.﹣78.在平面直角坐標系中,點(-1,-2)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.在同一直角坐標系中,二次函數y=x2與反比例函數y=1x(x>0)的圖象如圖所示,若兩個函數圖象上有三個不同的點A(x1,m),B(x2,m),C(x3,m),其中m為常數,令ω=x1+x2+x3A.1B.mC.m2D.110.小明和小張兩人練習電腦打字,小明每分鐘比小張少打6個字,小明打120個字所用的時間和小張打180個字所用的時間相等.設小明打字速度為x個/分鐘,則列方程正確的是()A. B. C. D.11.在銀行存款準備金不變的情況下,銀行的可貸款總量與存款準備金率成反比例關系.當存款準備金率為7.5%時,某銀行可貸款總量為400億元,如果存款準備金率上調到8%時,該銀行可貸款總量將減少多少億()A.20 B.25 C.30 D.3512.方程x2﹣kx+1=0有兩個相等的實數根,則k的值是()A.2 B.﹣2 C.±2 D.0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在邊長為1的小正方形網格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tan∠AOD=________.14.高速公路某收費站出城方向有編號為的五個小客車收費出口,假定各收費出口每20分鐘通過小客車的數量分別都是不變的.同時開放其中的某兩個收費出口,這兩個出口20分鐘一共通過的小客車數量記錄如下:收費出口編號通過小客車數量(輛)260330300360240在五個收費出口中,每20分鐘通過小客車數量最多的一個出口的編號是___________.15.如圖,自左至右,第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成;第2個圖由2個正六邊形、11個正方形和10個等邊三角形組成;第3個圖由3個正六邊形、16個正方形和14個等邊三角形組成;…按照此規律,第n個圖中正方形和等邊三角形的個數之和為______個.16.三角形兩邊的長是3和4,第三邊的長是方程x2﹣14x+48=0的根,則該三角形的周長為_____.17.使得關于x的分式方程的解為負整數,且使得關于x的不等式組有且僅有5個整數解的所有k的和為_____.18.計算:﹣|﹣2|+()﹣1=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在直角坐標系xOy中,直線與雙曲線相交于A(-1,a)、B兩點,BC⊥x軸,垂足為C,△AOC的面積是1.求m、n的值;求直線AC的解析式.20.(6分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B,與y軸交于C(0,3),直線y=+m經過點C,與拋物線的另一交點為點D,點P是直線CD上方拋物線上的一個動點,過點P作PF⊥x軸于點F,交直線CD于點E,設點P的橫坐標為m.(1)求拋物線解析式并求出點D的坐標;(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當△CPE是等腰三角形時,請直接寫出m的值.21.(6分)已知拋物線的開口向上頂點為P(1)若P點坐標為(4,一1),求拋物線的解析式;(2)若此拋物線經過(4,一1),當-1≤x≤2時,求y的取值范圍(用含a的代數式表示)(3)若a=1,且當0≤x≤1時,拋物線上的點到x軸距離的最大值為6,求b的值22.(8分)關于x的一元二次方程有兩個實數根,則m的取值范圍是()A.m≤1 B.m<1 C.﹣3≤m≤1 D.﹣3<m<123.(8分)某中學為了了解在校學生對校本課程的喜愛情況,隨機調查了部分學生對五類校本課程的喜愛情況,要求每位學生只能選擇一類最喜歡的校本課程,根據調查結果繪制了如下的兩個不完整統計圖.請根據圖中所提供的信息,完成下列問題:(1)本次被調查的學生的人數為;(2)補全條形統計圖(3)扇形統計圖中,類所在扇形的圓心角的度數為;(4)若該中學有2000名學生,請估計該校最喜愛兩類校本課程的學生約共有多少名.24.(10分)某校組織了一次初三科技小制作比賽,有A.B.C,D四個班共提供了100件參賽作品.C班提供的參賽作品的獲獎率為50%,其他幾個班的參賽作品情況及獲獎情況繪制在下列圖l和圖2兩幅尚不完整的統計圖中.(1)B班參賽作品有多少件?(2)請你將圖②的統計圖補充完整;(3)通過計算說明,哪個班的獲獎率高?(4)將寫有A,B,C,D四個字母的完全相同的卡片放入箱中,從中一次隨機抽出兩張卡片,求抽到A,B兩班的概率.25.(10分)如圖,點A.F、C.D在同一直線上,點B和點E分別在直線AD的兩側,且AB=DE,∠A=∠D,AF=DC.(1)求證:四邊形BCEF是平行四邊形,(2)若∠ABC=90°,AB=4,BC=3,當AF為何值時,四邊形BCEF是菱形.26.(12分)某商場服裝部為了調動營業員的積極性,決定實行目標管理,根據目標完成的情況對營業員進行適當的獎勵.為了確定一個適當的月銷售目標,商場服裝部統計了每位營業員在某月的銷售額(單位:萬元),數據如下:171816132415282618192217161932301614152615322317151528281619對這30個數據按組距3進行分組,并整理、描述和分析如下.頻數分布表組別一二三四五六七銷售額頻數79322數據分析表平均數眾數中位數20.318請根據以上信息解答下列問題:填空:a=,b=,c=;若將月銷售額不低于25萬元確定為銷售目標,則有位營業員獲得獎勵;若想讓一半左右的營業員都能達到銷售目標,你認為月銷售額定為多少合適?說明理由.27.(12分)如圖,已知二次函數的圖象與x軸交于A,B兩點,與y軸交于點C,的半徑為,P為上一動點.點B,C的坐標分別為______,______;是否存在點P,使得為直角三角形?若存在,求出點P的坐標;若不存在,請說明理由;連接PB,若E為PB的中點,連接OE,則OE的最大值______.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】分析:根據30°角的三角函數值代入計算即可.詳解:2cos30°=2×=.故選C.點睛:此題主要考查了特殊角的三角函數值的應用,熟記30°、45°、60°角的三角函數值是解題關鍵.2、C【解析】
科學記數法就是將一個數字表示成a×10的n次冪的形式,其中1≤|a|<10,n表示整數.n為整數位數減1,即從左邊第一位開始,在首位非零的后面加上小數點,再乘以10的n次冪.【詳解】數據8600用科學記數法表示為8.6×103故選C.【點睛】用科學記數法表示一個數的方法是(1)確定a:a是只有一位整數的數;(2)確定n:當原數的絕對值≥10時,n為正整數,n等于原數的整數位數減1;當原數的絕對值<1時,n為負整數,n的絕對值等于原數中左起第一個非零數前零的個數(含整數位數上的零).3、A【解析】
設售價為x元時,每星期盈利為6125元,那么每件利潤為(x-40),原來售價為每件60元時,每星期可賣出300件,所以現在可以賣出[300+20(60-x)]件,然后根據盈利為6120元即可列出方程解決問題.【詳解】解:設售價為x元時,每星期盈利為6120元,
由題意得(x-40)[300+20(60-x)]=6120,
解得:x1=57,x2=1,
由已知,要多占市場份額,故銷售量要盡量大,即售價要低,故舍去x2=1.
∴每件商品應降價60-57=3元.
故選:A.【點睛】本題考查了一元二次方程的應用.此題找到關鍵描述語,找到等量關系準確的列出方程是解決問題的關鍵.此題要注意判斷所求的解是否符合題意,舍去不合題意的解.4、C【解析】
由平行四邊形的性質得出∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質求出∠AEF=72°,由三角形內角和定理求出∠AED′=108°,即可得出∠FED′的大?。驹斀狻俊咚倪呅蜛BCD是平行四邊形,∴,由折疊的性質得:,,∴,,∴;故選C.【點睛】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內角和定理;熟練掌握平行四邊形的性質和折疊的性質,求出∠AEF和∠AED′是解決問題的關鍵.5、B【解析】
配方法的一般步驟:(1)把常數項移到等號的右邊;(2)把二次項的系數化為1;(3)等式兩邊同時加上一次項系數一半的平方.【詳解】解:、,,,,故選項正確.、,,,,故選項錯誤.、,,,,,故選項正確.、,,,,.故選項正確.故選:.【點睛】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確應用.選擇用配方法解一元二次方程時,最好使方程的二次項的系數為1,一次項的系數是2的倍數.6、D【解析】
求出AB的坐標,設直線AB的解析式是y=kx+b,把A、B的坐標代入求出直線AB的解析式,根據三角形的三邊關系定理得出在△ABP中,|AP-BP|<AB,延長AB交x軸于P′,當P在P′點時,PA-PB=AB,此時線段AP與線段BP之差達到最大,求出直線AB于x軸的交點坐標即可.【詳解】把,代入反比例函數,得:,,,在中,由三角形的三邊關系定理得:,延長交軸于,當在點時,,即此時線段與線段之差達到最大,設直線的解析式是,把,的坐標代入得:,解得:,直線的解析式是,當時,,即,故選D.【點睛】本題考查了三角形的三邊關系定理和用待定系數法求一次函數的解析式的應用,解此題的關鍵是確定P點的位置,題目比較好,但有一定的難度.7、B【解析】【分析】由于一次函數y=-2x+3中k=-2<0由此可以確定y隨x的變化而變化的情況,即確定函數的增減性,然后利用解析式即可求出自變量在0≤x≤5范圍內函數值的最大值.【詳解】∵一次函數y=﹣2x+3中k=﹣2<0,∴y隨x的增大而減小,∴在0≤x≤5范圍內,x=0時,函數值最大﹣2×0+3=3,故選B.【點睛】本題考查了一次函數y=kx+b的圖象的性質:①k>0,y隨x的增大而增大;②k<0,y隨x的增大而減?。?、C【解析】:∵點的橫縱坐標均為負數,∴點(-1,-2)所在的象限是第三象限,故選C9、D【解析】
本題主要考察二次函數與反比例函數的圖像和性質.【詳解】令二次函數中y=m.即x2=m,解得x=m或x=-m.令反比例函數中y=m,即1x=m,解得x=1m,將x的三個值相加得到ω=m+(-m)+【點睛】巧妙借助三點縱坐標相同的條件建立起兩個函數之間的聯系,從而解答.10、C【解析】
解:因為設小明打字速度為x個/分鐘,所以小張打字速度為(x+6)個/分鐘,根據關系:小明打120個字所用的時間和小張打180個字所用的時間相等,可列方程得,故選C.【點睛】本題考查列分式方程解應用題,找準題目中的等量關系,難度不大.11、B【解析】設可貸款總量為y,存款準備金率為x,比例常數為k,則由題意可得:,,∴,∴當時,(億),∵400-375=25,∴該行可貸款總量減少了25億.故選B.12、C【解析】
根據已知得出△=(﹣k)2﹣4×1×1=0,解關于k的方程即可得.【詳解】∵方程x2﹣kx+1=0有兩個相等的實數根,∴△=(﹣k)2﹣4×1×1=0,解得:k=±2,故選C.【點睛】本題考查了根的判別式的應用,注意:一元二次方程ax2+bx+c=0(a、b、c為常數,a≠0),當b2﹣4ac>0時,方程有兩個不相等的實數根;當b2﹣4ac=0時,方程有兩個相等的實數根;當b2﹣4ac<0時,方程無實數根.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
首先連接BE,由題意易得BF=CF,△ACO∽△BKO,然后由相似三角形的對應邊成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,繼而求得答案.【詳解】如圖,連接BE,∵四邊形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根據題意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:1,∴KO=OF=CF=BF,在Rt△PBF中,tan∠BOF==1,∵∠AOD=∠BOF,∴tan∠AOD=1.故答案為1【點睛】此題考查了相似三角形的判定與性質,三角函數的定義.此題難度適中,解題的關鍵是準確作出輔助線,注意轉化思想與數形結合思想的應用.14、B【解析】
利用同時開放其中的兩個安全出口,20分鐘所通過的小車的數量分析對比,能求出結果.【詳解】同時開放A、E兩個安全出口,與同時開放D、E兩個安全出口,20分鐘的通過數量發現得到D疏散乘客比A快;同理同時開放BC與CD進行對比,可知B疏散乘客比D快;同理同時開放BC與AB進行對比,可知C疏散乘客比A快;同理同時開放DE與CD進行對比,可知E疏散乘客比C快;同理同時開放AB與AE進行對比,可知B疏散乘客比E快;所以B口的速度最快故答案為B.【點睛】本題考查簡單的合理推理,考查推理論證能力等基礎知識,考查運用求解能力,考查函數與方程思想,是基礎題.15、9n+1.【解析】
∵第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成,∴正方形和等邊三角形的和=6+6=12=9+1;∵第2個圖由11個正方形和10個等邊三角形組成,∴正方形和等邊三角形的和=11+10=21=9×2+1;∵第1個圖由16個正方形和14個等邊三角形組成,∴正方形和等邊三角形的和=16+14=10=9×1+1,…,∴第n個圖中正方形和等邊三角形的個數之和=9n+1.故答案為9n+1.16、13【解析】
利用因式分解法求出解已知方程的解確定出第三邊,即可求出該三角形的周長.【詳解】方程x2-14x+48=0,分解因式得:(x-6)(x-8)=0,解得:x=6或x=8,當x=6時,三角形周長為3+4+6=13,當x=8時,3+4<8不能構成三角形,舍去,綜上,該三角形的周長為13,故答案為13【點睛】此題考查了解一元二次方程-因式分解法,以及三角形三邊關系,熟練掌握運算法則是解本題的關鍵.17、12.1【解析】
依據分式方程=1的解為負整數,即可得到k>,k≠1,再根據不等式組有1個整數解,即可得到0≤k<4,進而得出k的值,從而可得符合題意的所有k的和.【詳解】解分式方程=1,可得x=1-2k,
∵分式方程=1的解為負整數,
∴1-2k<0,
∴k>,
又∵x≠-1,
∴1-2k≠-1,
∴k≠1,
解不等式組,可得,
∵不等式組有1個整數解,
∴1≤<2,
解得0≤k<4,
∴<k<4且k≠1,
∴k的值為1.1或2或2.1或3或3.1,
∴符合題意的所有k的和為12.1,
故答案為12.1.【點睛】本題考查了解一元一次不等式組、分式方程的解,解題時注意分式方程中的解要滿足分母不為0的情況.18、﹣1【解析】
根據立方根、絕對值及負整數指數冪等知識點解答即可.【詳解】原式=-2-2+3=-1【點睛】本題考查了實數的混合運算,解題的關鍵是掌握運算法則及運算順序.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)m=-1,n=-1;(2)y=-x+【解析】
(1)由直線與雙曲線相交于A(-1,a)、B兩點可得B點橫坐標為1,點C的坐標為(1,0),再根據△AOC的面積為1可求得點A的坐標,從而求得結果;(2)設直線AC的解析式為y=kx+b,由圖象過點A(-1,1)、C(1,0)根據待定系數法即可求的結果.【詳解】(1)∵直線與雙曲線相交于A(-1,a)、B兩點,∴B點橫坐標為1,即C(1,0)∵△AOC的面積為1,∴A(-1,1)將A(-1,1)代入,可得m=-1,n=-1;(2)設直線AC的解析式為y=kx+b∵y=kx+b經過點A(-1,1)、C(1,0)∴解得k=-,b=.∴直線AC的解析式為y=-x+.【點睛】本題考查了一次函數與反比例函數圖象的交點問題,此類問題是初中數學的重點,在中考中極為常見,熟練掌握待定系數法是解題關鍵.20、(1)y=﹣x2+2x+3,D點坐標為();(2)當m=時,△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】
(1)利用待定系數法求拋物線解析式和直線CD的解析式,然后解方程組得D點坐標;
(2)設P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數的性質解決問題;
(3)討論:當PC=PE時,m2+(-m2+2m+3-3)2=(-m2+m)2;當CP=CE時,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當EC=EP時,m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點坐標為(,);(2)存在.設P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當m=時,△CDP的面積存在最大值,最大值為;(3)當PC=PE時,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當CP=CE時,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當EC=EP時,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.【點睛】本題考核知識點:二次函數的綜合應用.解題關鍵點:靈活運用二次函數性質,運用數形結合思想.21、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.【解析】
(1)將P(4,-1)代入,可求出解析式
(2)將(4,-1)代入求得:b=-4a-1,再代入對稱軸直線中,可判斷,且開口向上,所以y隨x的增大而減小,再把x=-1,x=2代入即可求得.
(3)觀察圖象可得,當0≤x≤1時,拋物線上的點到x軸距離的最大值為6,這些點可能為x=0,x=1,三種情況,再根據對稱軸在不同位置進行討論即可.【詳解】解:(1)由此拋物線頂點為P(4,-1),所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=,b=-8a=-2所以拋物線解析式為:;(2)由此拋物線經過點C(4,-1),所以一1=16a+4b+3,即b=-4a-1.因為拋物線的開口向上,則有其對稱軸為直線,而所以當-1≤x≤2時,y隨著x的增大而減小當x=-1時,y=a+(4a+1)+3=4+5a當x=2時,y=4a-2(4a+1)+3=1-4a所以當-1≤x≤2時,1-4a≤y≤4+5a;(3)當a=1時,拋物線的解析式為y=x2+bx+3∴拋物線的對稱軸為直線由拋物線圖象可知,僅當x=0,x=1或x=-時,拋物線上的點可能離x軸最遠分別代入可得,當x=0時,y=3當x=1時,y=b+4當x=-時,y=-+3①當一<0,即b>0時,3≤y≤b+4,由b+4=6解得b=2②當0≤-≤1時,即一2≤b≤0時,△=b2-12<0,拋物線與x軸無公共點由b+4=6解得b=2(舍去);③當,即b<-2時,b+4≤y≤3,由b+4=-6解得b=-10綜上,b=2或-10【點睛】本題考查了二次函數的性質,待定系數法求函數解析式,以及最值問題,關鍵是對稱軸在不同的范圍內,拋物線上的點到x軸距離的最大值的點不同.22、C【解析】
利用二次根式有意義的條件和判別式的意義得到,然后解不等式組即可.【詳解】根據題意得,解得-3≤m≤1.故選C.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0時,方程有兩個不相等的兩個實數根;當△=0時,方程有兩個相等的兩個實數根;當△<0時,方程無實數根.23、(1)300;(2)見解析;(3)108°;(4)約有840名.【解析】
(1)根據A種類人數及其占總人數百分比可得答案;
(2)用總人數乘以B的百分比得出其人數,即可補全條形圖;
(3)用360°乘以C類人數占總人數的比例可得;
(4)總人數乘以C、D兩類人數占樣本的比例可得答案.【詳解】解:(1)本次被調查的學生的人數為69÷23%=300(人),
故答案為:300;
(2)喜歡B類校本課程的人數為300×20%=60(人),
補全條形圖如下:
(3)扇形統計圖中,C類所在扇形的圓心角的度數為360°×=108°,
故答案為:108°;
(4)∵2000×=840,
∴估計該校喜愛C,D兩類校本課程的學生共有840名.【點睛】本題考查條形統計圖、扇形統計圖的綜合運用.讀懂統計圖,從統計圖中得到必要的信息是解題關鍵.條形統計圖能清楚地表示出每個項目的數據.24、(1)25件;(2)見解析;(3)B班的獲獎率高;(4)16【解析】試題分析:(1)直接利用扇形統計圖中百分數,進而求出B班參賽作品數量;(2)利用C班提供的參賽作品的獲獎率為50%,結合C班參賽數量得出獲獎數量;(3)分別求出各班的獲獎百分率,進而求出答案;(4)利用樹狀統計圖得出所有符合題意的答案進而求出其概率.試題解析:(1)由題意可得:100×(1﹣35%﹣20%﹣20%)=25(件),答:B班參賽作品有25件;(2)∵C班提供的參賽作品的獲獎率為50%,∴C班的參賽作品的獲獎數量為:100×20%×50%=10(件),如圖所示:;(3)A班的獲獎率為:14100×35%×100%=40%,B班的獲獎率為:11C班的獲獎率為:1020=50%;D班的獲獎率為:8故C班的獲獎率高;(4)如圖所示:,故一共有12種情況,符合題意的有2種情況,則從中一次隨機抽出兩張卡片,求抽到A、B兩班的概率為:212=1考點:1.列表法與樹狀圖法;2.扇形統計圖;3.條形統計圖.25、(1)見解析(2)當AF=時,四邊形BCEF是菱形.【解析】
(1)由AB=DE,∠A=∠D,AF=DC,根據SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四邊形BCEF是平行四邊形.(2)由四邊形BCEF是平行四邊形,可得當BE⊥CF時,四邊形BCEF是菱形,所以連接BE,交CF與點G,證得△ABC∽△BGC,由相似三角形的對應邊成比例,即可求得AF的值.【詳解】(1)證明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.∴四邊形BCEF是平行四邊形.(2)解:連接BE,交CF與點G,∵四邊形BCEF是平行四邊形,∴當BE⊥CF時,四邊形BCEF是菱形.∵∠ABC=90°,AB=4,BC=3,∴AC=.∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC.∴,即.∴.∵FG=CG,∴FC=2CG=,∴AF=AC﹣FC=5﹣.∴當AF=時,四邊形BCEF是菱形.26、(1)眾數為15;(2)3,4,15;8;(3)月銷售額定為18萬,有一半左右的營業員能達到銷售目標.【解析】
根據數據可得到落在第四組、第六組的個數分別為3個、4個,所以a=3,b=4,再根據數據可得15出現了5次,出現次數最多,所以眾數c=15;從頻數分布表中可以看出月銷售額不低于25萬元的營業員有8個,所以本小題答案為:8;本題是考查中位數的知識,根據中位數可以讓一半左
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護理安全管理
- 大班家長會活動情況總結模版
- 山東省濟寧市2025年高考模擬考試英語試題及答案(濟寧三模)
- 淺析藥品GMP修訂草案鄧海根老師-09-08-04
- 小學開展語言文字工作總結模版
- 心房內傳導阻滯的臨床護理
- 統編人教版三年級語文下冊《口語交際:春游去哪兒玩》公開課教學課件
- 學前兒童發展 課件 第10章 學前兒童語言的發展
- 內蒙古根河市阿龍山中學2025屆七年級數學第二學期期末達標檢測模擬試題含解析
- 湖南省鳳凰縣聯考2025年七下數學期末質量檢測模擬試題含解析
- 2025+CSCO非小細胞肺癌診療指南解讀課件
- 中學生學憲法班會課件
- 醫院后勤考試試題及答案
- 縣人民醫院老住院樓裝修改造項目可行性研究報告申請報告編寫
- 腎內科健康科普護理
- 第1課 中華文明的起源與早期國家 課件 人教版必修上冊中外歷史綱要
- 互聯網運營思維
- T∕CACM 1085-2018 中醫治未病技術操作規范 調神益智針法預防血管性認知障礙
- 裝修銷售培訓課件
- 暗挖開挖技術交底
- 數據治理架構試題及答案
評論
0/150
提交評論