高中數學-第二講:證明不等式的基本方法課件-新人教A版選修4_第1頁
高中數學-第二講:證明不等式的基本方法課件-新人教A版選修4_第2頁
高中數學-第二講:證明不等式的基本方法課件-新人教A版選修4_第3頁
高中數學-第二講:證明不等式的基本方法課件-新人教A版選修4_第4頁
高中數學-第二講:證明不等式的基本方法課件-新人教A版選修4_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第二講:證明不等式的根本方法第一頁,編輯于星期五:十點三十九分。作差—變形—判斷符號—下結論。作商—變形—與1比較大小---下結論。第二頁,編輯于星期五:十點三十九分。(2)作商比較法第三頁,編輯于星期五:十點三十九分。第四頁,編輯于星期五:十點三十九分。第五頁,編輯于星期五:十點三十九分。第六頁,編輯于星期五:十點三十九分。第七頁,編輯于星期五:十點三十九分。第八頁,編輯于星期五:十點三十九分。補充練習:DA第九頁,編輯于星期五:十點三十九分。ABQ>P>M第十頁,編輯于星期五:十點三十九分。三、反證法與放縮法(1)反證法先假設要證的命題不成立,以此為出發點,結合條件,應用公理,定義,定理,性質等,進行正確的推理,得到和命題的條件(或已證明的定理,性質,明顯成立的事實等)矛盾的結論,以說明假設不正確,從而證明原命題成立,這種方法稱為反證法.對于那些直接證明比較困難的命題常常用反證法證明.反證法主要適用于以下兩種情形(1)要證的結論與條件之間的聯系不明顯,直接由條件推出結論的線索不夠清晰;(2)如果從正面證明,需要分成多種情形進行分類討論而從反面進行證明,只研究一種或很少的幾種情形.〔正難那么反〕第十一頁,編輯于星期五:十點三十九分。第十二頁,編輯于星期五:十點三十九分。第十三頁,編輯于星期五:十點三十九分。(2)放縮法證明不等式時,通過把不等式中的某些局部的值放大或縮小,可以使不等式中有關項之間的大小關系更加明確或使不等式中的項得到簡化而有利于代數變形,從而到達證明的目的,我們把這種方法稱為放縮法.通常放大或縮小的方法是不唯一的,因而放縮法具有較在原靈活性;另外,用放縮法證明不等式,關鍵是放、縮適當,否那么就不能到達目的,因此放縮法是技巧性較強的一種證法.第十四頁,編輯于星期五:十點三十九分。第十五頁,編輯于星期五:十點三十九分。第十六頁,編輯于星期五:十點三十九分。第十七頁,編輯于星期五:十點三十九分。習題2.31、設0<a,b,c<1,求證:(1

a)b,(1

b)c,(1

c)a,

不可能同時大于1/4則三式相乘:(1

a)b?(1

b)c?(1

c)a>又∵0<a,b,c<1∴同理:以上三式相乘:(1

a)a?(1

b)b?(1

c)c≤與①矛盾∴結論成立證明:設(1

a)b>1/4,(1

b)c>1/4,(1

c)a>1/4,第十八頁,編輯于星期五:十點三十九分。第十九頁,編輯于星期五:十點三十九分。

法1:

證明:在時,顯然成立.當時,左邊

第二十頁,編輯于星期五:十點三十九分。法2:法3:函數的方法第二十一頁,編輯于星期五:十點三十九

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論