湖南省雙峰縣2023-2024學年中考數學全真模擬試題含解析_第1頁
湖南省雙峰縣2023-2024學年中考數學全真模擬試題含解析_第2頁
湖南省雙峰縣2023-2024學年中考數學全真模擬試題含解析_第3頁
湖南省雙峰縣2023-2024學年中考數學全真模擬試題含解析_第4頁
湖南省雙峰縣2023-2024學年中考數學全真模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省雙峰縣2023-2024學年中考數學全真模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖所示,,結論:①;②;③;④,其中正確的是有()A.1個 B.2個 C.3個 D.4個2.如圖,在平面直角坐標系中,位于第二象限,點的坐標是,先把向右平移3個單位長度得到,再把繞點順時針旋轉得到,則點的對應點的坐標是()A. B. C. D.3.如圖,一個斜坡長130m,坡頂離水平地面的距離為50m,那么這個斜坡的坡度為(

)A. B. C. D.4.如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數為()A.15° B.55° C.65° D.75°5.義安區某中學九年級人數相等的甲、乙兩班學生參加同一次數學測試,兩班平均分和方差分別為甲=89分,乙=89分,S甲2=195,S乙2=1.那么成績較為整齊的是()A.甲班 B.乙班 C.兩班一樣 D.無法確定6.2017年,太原市GDP突破三千億元大關,達到3382億元,經濟總量比上年增長了426.58億元,達到近三年來增量的最高水平,數據“3382億元”用科學記數法表示為()A.3382×108元B.3.382×108元C.338.2×109元D.3.382×1011元7.在平面直角坐標系中,將拋物線繞著它與軸的交點旋轉180°,所得拋物線的解析式是().A. B.C. D.8.某區10名學生參加市級漢字聽寫大賽,他們得分情況如上表:那么這10名學生所得分數的平均數和眾數分別是()人數3421分數80859095A.85和82.5 B.85.5和85 C.85和85 D.85.5和809.如圖,在正五邊形ABCDE中,連接BE,則∠ABE的度數為()A.30° B.36° C.54° D.72°10.某運動會頒獎臺如圖所示,它的主視圖是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,∠A=70°,∠B=50°,點D,E分別為AB,AC上的點,沿DE折疊,使點A落在BC邊上點F處,若△EFC為直角三角形,則∠BDF的度數為______.12.經過兩次連續降價,某藥品銷售單價由原來的50元降到32元,設該藥品平均每次降價的百分率為x,根據題意可列方程是__________________________.13.如圖,在平面直角坐標系中,以坐標原點O為位似中心在y軸的左側將△OAB縮小得到△OA′B′,若△OAB與△OA′B′的相似比為2:1,則點B(3,﹣2)的對應點B′的坐標為_____.14.因式分解:-3x2+3x=________.15.甲乙兩人8次射擊的成績如圖所示(單位:環)根據圖中的信息判斷,這8次射擊中成績比較穩定的是______(填“甲”或“乙”)16.被歷代數學家尊為“算經之首”的九章算術是中國古代算法的扛鼎之作九章算術中記載:“今有五雀、六燕,集稱之衡,雀俱重,燕俱輕一雀一燕交而處,衡適平并燕、雀重一斤問燕、雀一枚各重幾何?”譯文:“今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕將一只雀、一只燕交換位置而放,重量相等只雀、6只燕重量為1斤問雀、燕毎只各重多少斤?”設每只雀重x斤,每只燕重y斤,可列方程組為______.17.如圖,在平面直角坐標系xOy中,四邊形OABC是正方形,點C(0,4),D是OA中點,將△CDO以C為旋轉中心逆時針旋轉90°后,再將得到的三角形平移,使點C與點O重合,寫出此時點D的對應點的坐標:_____.三、解答題(共7小題,滿分69分)18.(10分)甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發駛向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數關系;折線OBCDA表示轎車離甲地距離y(千米)與時間x(小時)之間的函數關系.請根據圖象解答下列問題:當轎車剛到乙地時,此時貨車距離乙地千米;當轎車與貨車相遇時,求此時x的值;在兩車行駛過程中,當轎車與貨車相距20千米時,求x的值.19.(5分)有A、B兩組卡片共1張,A組的三張分別寫有數字2,4,6,B組的兩張分別寫有3,1.它們除了數字外沒有任何區別,隨機從A組抽取一張,求抽到數字為2的概率;隨機地分別從A組、B組各抽取一張,請你用列表或畫樹狀圖的方法表示所有等可能的結果.現制定這樣一個游戲規則:若選出的兩數之積為3的倍數,則甲獲勝;否則乙獲勝.請問這樣的游戲規則對甲乙雙方公平嗎?為什么?20.(8分)先化簡,再求值:(﹣1)÷,其中x=1.21.(10分)一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現從中任意摸出一個球是紅球的概率為.求口袋中黃球的個數;甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;22.(10分)已知:如圖,在正方形ABCD中,點E、F分別是AB、BC邊的中點,AF與CE交點G,求證:AG=CG.23.(12分)如圖,點D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求證:AB=EF.24.(14分)如圖,△ABC中,∠C=90°,AC=BC,∠ABC的平分線BD交AC于點D,DE⊥AB于點E.(1)依題意補全圖形;(2)猜想AE與CD的數量關系,并證明.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據已知的條件,可由AAS判定△AEB≌△AFC,進而可根據全等三角形得出的結論來判斷各選項是否正確.【詳解】解:如圖:在△AEB和△AFC中,有,∴△AEB≌△AFC;(AAS)∴∠FAM=∠EAN,∴∠EAN-∠MAN=∠FAM-∠MAN,即∠EAM=∠FAN;(故③正確)又∵∠E=∠F=90°,AE=AF,∴△EAM≌△FAN;(ASA)∴EM=FN;(故①正確)由△AEB≌△AFC知:∠B=∠C,AC=AB;又∵∠CAB=∠BAC,∴△ACN≌△ABM;(故④正確)由于條件不足,無法證得②CD=DN;故正確的結論有:①③④;故選C.【點睛】此題主要考查的是全等三角形的判定和性質,做題時要從最容易,最簡單的開始,由易到難.2、D【解析】

根據要求畫出圖形,即可解決問題.【詳解】解:根據題意,作出圖形,如圖:觀察圖象可知:A2(4,2);故選:D.【點睛】本題考查平移變換,旋轉變換等知識,解題的關鍵是正確畫出圖象,屬于中考常考題型.3、A【解析】試題解析:∵一個斜坡長130m,坡頂離水平地面的距離為50m,∴這個斜坡的水平距離為:=10m,∴這個斜坡的坡度為:50:10=5:1.故選A.點睛:本題考查解直角三角形的應用-坡度坡角問題,解題的關鍵是明確坡度的定義.坡度是坡面的鉛直高度h和水平寬度l的比,又叫做坡比,它是一個比值,反映了斜坡的陡峭程度,一般用i表示,常寫成i=1:m的形式.4、D【解析】

根據鄰補角定義可得∠ADE=15°,由平行線的性質可得∠A=∠ADE=15°,再根據三角形內角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【點睛】本題考查了平行線的性質、三角形內角和定理等,熟練掌握平行線的性質以及三角形內角和定理是解題的關鍵.5、B【解析】

根據方差的意義,方差反映了一組數據的波動大小,故可由兩人的方差得到結論.【詳解】∵S甲2>S乙2,∴成績較為穩定的是乙班。故選:B.【點睛】本題考查了方差,解題的關鍵是掌握方差的概念進行解答.6、D【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】3382億=338200000000=3.382×1.故選:D.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.7、B【解析】

把拋物線y=x2+2x+3整理成頂點式形式并求出頂點坐標,再求出與y軸的交點坐標,然后求出所得拋物線的頂點,再利用頂點式形式寫出解析式即可.【詳解】解:∵y=x2+2x+3=(x+1)2+2,

∴原拋物線的頂點坐標為(-1,2),

令x=0,則y=3,

∴拋物線與y軸的交點坐標為(0,3),

∵拋物線繞與y軸的交點旋轉180°,

∴所得拋物線的頂點坐標為(1,4),

∴所得拋物線的解析式為:y=-x2+2x+3[或y=-(x-1)2+4].

故選:B.【點睛】本題考查了二次函數圖象與幾何變換,利用頂點的變化確定函數解析式的變化可以使求解更簡便.8、B【解析】

根據眾數及平均數的定義,即可得出答案.【詳解】解:這組數據中85出現的次數最多,故眾數是85;平均數=(80×3+85×4+90×2+95×1)=85.5.故選:B.【點睛】本題考查了眾數及平均數的知識,掌握各部分的概念是解題關鍵.9、B【解析】

在等腰三角形△ABE中,求出∠A的度數即可解決問題.【詳解】解:在正五邊形ABCDE中,∠A=×(5-2)×180=108°

又知△ABE是等腰三角形,

∴AB=AE,

∴∠ABE=(180°-108°)=36°.

故選B.【點睛】本題主要考查多邊形內角與外角的知識點,解答本題的關鍵是求出正五邊形的內角,此題基礎題,比較簡單.10、C【解析】

從正面看到的圖形如圖所示:,故選C.二、填空題(共7小題,每小題3分,滿分21分)11、110°或50°.【解析】

由內角和定理得出∠C=60°,根據翻折變換的性質知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°兩種情況,先求出∠DFC度數,繼而由∠BDF=∠DFC﹣∠B可得答案.【詳解】∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性質知∠DFE=∠A=70°,分兩種情況討論:①當∠EFC=90°時,∠DFC=∠DFE+∠EFC=160°,則∠BDF=∠DFC﹣∠B=110°;②當∠FEC=90°時,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;綜上:∠BDF的度數為110°或50°.故答案為110°或50°.【點睛】本題考查的是圖形翻折變換的性質及三角形內角和定理,熟知折疊的性質、三角形的內角和定理、三角形外角性質是解答此題的關鍵.12、50(1﹣x)2=1.【解析】由題意可得,50(1?x)2=1,故答案為50(1?x)2=1.13、(-,1)【解析】

根據如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或?k進行解答.【詳解】解:∵以原點O為位似中心,相似比為:2:1,將△OAB縮小為△OA′B′,點B(3,?2)則點B(3,?2)的對應點B′的坐標為:(-,1),故答案為(-,1).【點睛】本題考查了位似變換:位似圖形與坐標,在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或?k.14、-3x(x-1)【解析】

原式提取公因式即可得到結果.【詳解】解:原式=-3x(x-1),故答案為-3x(x-1)【點睛】此題考查了因式分解-提公因式法,熟練掌握提取公因式的方法是解本題的關鍵.15、甲【解析】由圖表明乙這8次成績偏離平均數大,即波動大,而甲這8次成績,分布比較集中,各數據偏離平均小,方差小,則S2甲<S2乙,即兩人的成績更加穩定的是甲.故答案為甲.16、【解析】

設雀、燕每1只各重x斤、y斤,根據等量關系:今有5只雀、6只燕,分別聚集而且用衡器稱之,聚在一起的雀重,燕輕.將一只雀、一只燕交換位置而放,重量相等.5只雀、6只燕重量為1斤,列出方程組求解即可.【詳解】設雀、燕每1只各重x斤、y斤,根據題意,得整理,得故答案為【點睛】考查二元一次方程組得應用,解題的關鍵是分析題意,找出題中的等量關系.17、(4,2).【解析】

利用圖象旋轉和平移可以得到結果.【詳解】解:∵△CDO繞點C逆時針旋轉90°,得到△CBD′,則BD′=OD=2,∴點D坐標為(4,6);當將點C與點O重合時,點C向下平移4個單位,得到△OAD′′,∴點D向下平移4個單位.故點D′′坐標為(4,2),故答案為(4,2).【點睛】平移和旋轉:平移是指在同一平面內,將一個圖形整體按照某個直線方向移動一定的距離,這樣的圖形運動叫做圖形的平移運動,簡稱平移.定義在平面內,將一個圖形繞一點按某個方向轉動一個角度,這樣的運動叫做圖形的旋轉.這個定點叫做旋轉中心,轉動的角度叫做旋轉角.三、解答題(共7小題,滿分69分)18、(1)30;(2)當x=3.9時,轎車與貨車相遇;(3)在兩車行駛過程中,當轎車與貨車相距20千米時,x的值為3.5或4.3小時.【解析】

(1)根據圖象可知貨車5小時行駛300千米,由此求出貨車的速度為60千米/時,再根據圖象得出貨車出發后4.5小時轎車到達乙地,由此求出轎車到達乙地時,貨車行駛的路程為270千米,而甲、乙兩地相距300千米,則此時貨車距乙地的路程為:300﹣270=30千米;(2)先求出線段CD對應的函數關系式,再根據兩直線的交點即可解答;(3)分兩種情形列出方程即可解決問題.【詳解】解:(1)根據圖象信息:貨車的速度V貨=,∵轎車到達乙地的時間為貨車出發后4.5小時,∴轎車到達乙地時,貨車行駛的路程為:4.5×60=270(千米),此時,貨車距乙地的路程為:300﹣270=30(千米).所以轎車到達乙地后,貨車距乙地30千米.故答案為30;(2)設CD段函數解析式為y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其圖象上,,解得,∴CD段函數解析式:y=110x﹣195(2.5≤x≤4.5);易得OA:y=60x,,解得,∴當x=3.9時,轎車與貨車相遇;(3)當x=2.5時,y貨=150,兩車相距=150﹣80=70>20,由題意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,解得x=3.5或4.3小時.答:在兩車行駛過程中,當轎車與貨車相距20千米時,x的值為3.5或4.3小時.【點睛】本題考查了一次函數的應用,對一次函數圖象的意義的理解,待定系數法求一次函數的解析式的運用,行程問題中路程=速度×時間的運用,本題有一定難度,其中求出貨車與轎車的速度是解題的關鍵.19、(1)P(抽到數字為2)=;(2)不公平,理由見解析.【解析】試題分析:(1)根據概率的定義列式即可;(2)畫出樹狀圖,然后根據概率的意義分別求出甲、乙獲勝的概率,從而得解.試題解析:(1)P=;(2)由題意畫出樹狀圖如下:一共有6種情況,甲獲勝的情況有4種,P=,乙獲勝的情況有2種,P=,所以,這樣的游戲規則對甲乙雙方不公平.考點:游戲公平性;列表法與樹狀圖法.20、-1.【解析】

先化簡題目中的式子,再將x的值代入化簡后的式子即可解答本題.【詳解】解:原式=,=,=,=﹣,當x=1時,原式=﹣=﹣1.【點睛】本題主要考查分式的化簡求值,解題的關鍵是掌握分式的混合運算順序和運算法則21、(1)1;(2)【解析】

(1)設口袋中黃球的個數為x個,根據從中任意摸出一個球是紅球的概率為和概率公式列出方程,解方程即可求得答案;(2)根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次摸出都是紅球的情況,再利用概率公式即可求得答案;【詳解】解:(1)設口袋中黃球的個數為個,根據題意得:解得:=1經檢驗:=1是原分式方程的解∴口袋中黃球的個數為1個(2)畫樹狀圖得:∵共有12種等可能的結果,兩次摸出都是紅球的有2種情況∴兩次摸出都是紅球的概率為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論