




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Two-SampleTestsandOne-WayANOVAChapter10ObjectivesInthischapter,youlearn:
HowtousehypothesistestingforcomparingthedifferencebetweenThemeansoftwoindependentpopulationsThemeansoftworelatedpopulationsTheproportionsoftwoindependentpopulationsThevariancesoftwoindependentpopulationsThemeansofmorethantwopopulationsTwo-SampleTestsTwo-SampleTestsPopulationMeans,IndependentSamplesPopulationMeans,RelatedSamplesPopulationVariancesGroup1vs.Group2Samegroupbeforevs.aftertreatmentVariance1vs.Variance2Examples:PopulationProportionsProportion1vs.Proportion2DCOVADifferenceBetweenTwoMeansPopulationmeans,independentsamplesGoal:Testhypothesisorformaconfidenceintervalforthedifferencebetweentwopopulationmeans,μ1–μ2
ThepointestimateforthedifferenceisX1–X2*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalDCOVADifferenceBetweenTwoMeans:IndependentSamplesPopulationmeans,independentsamples*UseSptoestimateunknownσ.UseaPooled-Variance
ttest.σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalUseS1andS2toestimateunknownσ1andσ2.UseaSeparate-variancettestDifferentdatasourcesUnrelatedIndependentSampleselectedfromonepopulationhasnoeffectonthesampleselectedfromtheotherpopulationDCOVAHypothesisTestsfor
TwoPopulationMeansLower-tailtest:H0:μ1
μ2H1:μ1<μ2i.e.,H0:μ1–μ2
0H1:μ1–μ2
<0Upper-tailtest:H0:μ1≤μ2H1:μ1
>
μ2i.e.,H0:μ1–μ2
≤0H1:μ1–μ2
>0Two-tailtest:H0:μ1=μ2H1:μ1
≠
μ2i.e.,H0:μ1–μ2
=0H1:μ1–μ2
≠0TwoPopulationMeans,IndependentSamplesDCOVATwoPopulationMeans,IndependentSamplesLower-tailtest:H0:μ1–μ2
0H1:μ1–μ2
<0Upper-tailtest:H0:μ1–μ2
≤0H1:μ1–μ2
>0Two-tailtest:H0:μ1–μ2
=0H1:μ1–μ2
≠0aa/2a/2a-ta-ta/2tata/2RejectH0iftSTAT<-taRejectH0iftSTAT>taRejectH0iftSTAT<-ta/2
ortSTAT>ta/2
Hypothesistestsforμ1–μ2
DCOVAPopulationmeans,independentsamplesHypothesistestsforμ1-μ2withσ1andσ2unknownandassumedequalAssumptions:
SamplesarerandomlyandindependentlydrawnPopulationsarenormallydistributedorbothsamplesizesareatleast30Populationvariancesareunknownbutassumedequal*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalDCOVAPopulationmeans,independentsamplesThepooledvarianceis:Theteststatisticis:WheretSTAThasd.f.=(n1+n2–2)(continued)*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalHypothesistestsforμ1-μ2withσ1andσ2unknownandassumedequalDCOVAPopulationmeans,independentsamplesTheconfidenceintervalfor
μ1–μ2is:Wheretα/2hasd.f.=n1+n2–2*Confidenceintervalforμ1-μ2withσ1andσ2unknownandassumedequalσ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalDCOVAPooled-VariancetTestExampleYouareafinancialanalystforabrokeragefirm.IsthereadifferenceindividendyieldbetweenstockslistedontheNYSE&NASDAQ?Youcollectthefollowingdata:
NYSE
NASDAQ
Number2125Samplemean 3.272.53Samplestddev 1.301.16Assumingbothpopulationsareapproximatelynormalwithequalvariances,is
thereadifferenceinmean
yield(
=0.05)?DCOVAPooled-VariancetTestExample:CalculatingtheTestStatisticTheteststatisticis:(continued)H0:μ1-μ2=0i.e.(μ1=μ2)H1:μ1-μ2≠0i.e.(μ1≠μ2)DCOVAPooled-VariancetTestExample:HypothesisTestSolutionH0:μ1-μ2=0i.e.(μ1=μ2)H1:μ1-μ2≠0i.e.(μ1≠μ2)
=0.05df=21+25-2=44CriticalValues:t=±2.0154TestStatistic:Decision:Conclusion:RejectH0ata=0.05Thereisevidenceofadifferenceinmeans.t02.0154-2.0154.025RejectH0RejectH0.0252.040DCOVAPooled-VariancetTestExample:ConfidenceIntervalforμ1-μ2SincewerejectedH0canwebe95%confidentthatμNYSE>μNASDAQ?95%ConfidenceIntervalforμNYSE-μNASDAQSince0islessthantheentireinterval,wecanbe95%confidentthatμNYSE>μNASDAQDCOVAPopulationmeans,independentsamplesHypothesistestsforμ1-μ2withσ1andσ2unknown,notassumedequalAssumptions:
SamplesarerandomlyandindependentlydrawnPopulationsarenormallydistributedorbothsamplesizesareatleast30Populationvariancesareunknownandcannotbeassumedtobeequal*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalDCOVAPopulationmeans,independentsamples(continued)*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalHypothesistestsforμ1-μ2withσ1andσ2unknownandnotassumedequalDCOVATheformulaeforthistestarenotcoveredinthisbook.Seereference8fromthischapterformoredetails.ThistestutilizestwoseparatesamplevariancestoestimatethedegreesoffreedomforthettestSeparate-VariancetTestExampleYouareafinancialanalystforabrokeragefirm.IsthereadifferenceindividendyieldbetweenstockslistedontheNYSE&NASDAQ?Youcollectthefollowingdata:
NYSE
NASDAQ
Number2125Samplemean 3.272.53Samplestddev 1.301.16Assumingbothpopulationsareapproximatelynormalwithunequalvariances,is
thereadifferenceinmean
yield(
=0.05)?DCOVASeparate-VariancetTestExample:CalculatingtheTestStatistic(continued)H0:μ1-μ2=0i.e.(μ1=μ2)H1:μ1-μ2≠0i.e.(μ1≠μ2)DCOVASeparate-VariancetTestExample:HypothesisTestSolutionH0:μ1-μ2=0i.e.(μ1=μ2)H1:μ1-μ2≠0i.e.(μ1≠μ2)
=0.05df=40CriticalValues:t=±2.021TestStatistic:Decision:Conclusion:FailToRejectH0ata=0.05Thereisinsufficientevidenceofadifferenceinmeans.t02.021-2.021.025RejectH0RejectH0.0252.019DCOVARelatedPopulations
ThePairedDifferenceTest
TestsMeansof2RelatedPopulations PairedormatchedsamplesRepeatedmeasures(before/after)Usedifferencebetweenpairedvalues:EliminatesVariationAmongSubjectsAssumptions:DifferencesarenormallydistributedOr,ifnotNormal,uselargesamplesRelatedsamplesDi=X1i-X2iDCOVARelatedPopulations
ThePairedDifferenceTestTheith
paireddifferenceisDi,whereRelatedsamplesDi=X1i-X2i
ThepointestimateforthepaireddifferencepopulationmeanμDisD:nisthenumberofpairsinthepairedsampleThesamplestandarddeviationisSD(continued)DCOVATheteststatisticforμD
is:PairedsamplesWheretSTAThasn-1d.f.ThePairedDifferenceTest:
FindingtSTATDCOVALower-tailtest:H0:μD
0H1:μD<0Upper-tailtest:H0:μD≤0H1:μD
>0Two-tailtest:H0:μD=0H1:μD
≠0PairedSamplesThePairedDifferenceTest:PossibleHypothesesaa/2a/2a-ta-ta/2tata/2RejectH0iftSTAT<-taRejectH0iftSTAT>taRejectH0iftSTAT<-ta/2
ortSTAT>ta/2
WheretSTAThasn-1d.f.DCOVATheconfidenceintervalforμDisPairedsampleswhereThePairedDifferenceConfidenceIntervalDCOVAAssumeyousendyoursalespeopletoa“customerservice”trainingworkshop.Hasthetrainingmadeadifferenceinthenumberofcomplaints?Youcollectthefollowingdata:PairedDifferenceTest:Example
NumberofComplaints:
(2)-(1)Salesperson
Before(1)
After(2)
Difference,
DiC.B. 6
4-2T.F. 20
6-14M.H. 3
2-1R.K. 0
00M.O. 4
0
-4 -21
D=Din
=-4.2DCOVAHasthetrainingmadeadifferenceinthenumberofcomplaints(atthe0.01level)?
-4.2D=H0:μD=0H1:
μD
0TestStatistic:t0.005=±4.604
d.f.=n-1=4Reject
/2
-4.6044.604Decision:
DonotrejectH0(tstatisnotintherejectionregion)Conclusion:
Thereisinsufficientofachangeinthenumberofcomplaints.PairedDifferenceTest:SolutionReject
/2
-1.66
=.01DCOVATheconfidenceintervalforμDis:Sincethisintervalcontains0youare99%confidentthatμD=0ThePairedDifferenceConfidenceInterval--ExampleDCOVAD=-4.2,SD=5.67TwoPopulationProportionsGoal:testahypothesisorformaconfidenceintervalforthedifferencebetweentwopopulationproportions, π1–π2
ThepointestimateforthedifferenceisPopulationproportionsAssumptions:
n1π1
5,n1(1-π1)5n2π2
5,n2(1-π2)5
DCOVATwoPopulationProportionsPopulationproportionsThepooledestimatefortheoverallproportionis:whereX1andX2arethenumberofitemsofinterestinsamples1and2Inthenullhypothesisweassumethenullhypothesisistrue,soweassumeπ1=π2andpoolthetwosampleestimatesDCOVATwoPopulationProportionsPopulationproportionsTheteststatisticforπ1–π2isaZstatistic:(continued)whereDCOVAHypothesisTestsfor
TwoPopulationProportionsPopulationproportionsLower-tailtest:H0:π1
π2H1:π1<π2i.e.,H0:π1–π2
0H1:π1–π2
<0Upper-tailtest:H0:π1≤π2H1:π1
>
π2i.e.,H0:π1–π2
≤0H1:π1–π2
>0Two-tailtest:H0:π1=π2H1:π1
≠
π2i.e.,H0:π1–π2
=0H1:π1–π2
≠0DCOVAHypothesisTestsfor
TwoPopulationProportionsPopulationproportionsLower-tailtest:H0:π1–π2
0H1:π1–π2
<0Upper-tailtest:H0:π1–π2
≤0H1:π1–π2
>0Two-tailtest:H0:π1–π2
=0H1:π1–π2
≠0aa/2a/2a-za-za/2zaza/2RejectH0ifZSTAT<-ZaRejectH0ifZSTAT>ZaRejectH0ifZSTAT<-Za/2
orZSTAT>Za/2
(continued)DCOVAHypothesisTestExample:
TwopopulationProportionsIsthereasignificantdifferencebetweentheproportionofmenandtheproportionofwomenwhowillvoteYesonPropositionA?Inarandomsample,36of72menand35of50womenindicatedtheywouldvoteYesTestatthe.05levelofsignificanceDCOVAThehypothesistestis:H0:π1–π2
=0(thetwoproportionsareequal)H1:π1–π2
≠0(thereisasignificantdifferencebetweenproportions)Thesampleproportionsare:Men: p1=36/72=0.50Women: p2=35/50=0.70Thepooledestimatefortheoverallproportionis:HypothesisTestExample:
TwopopulationProportions(continued)DCOVATheteststatisticforπ1–π2is:HypothesisTestExample:
TwoPopulationProportions(continued).025-1.961.96.025-2.20Decision:
RejectH0Conclusion:
Thereisevidenceofasignificantdifferenceintheproportionofmenandwomenwhowillvoteyes.RejectH0RejectH0CriticalValues=±1.96For=.05DCOVAConfidenceIntervalfor
TwoPopulationProportionsPopulationproportionsTheconfidenceintervalfor
π1–π2is:DCOVAConfidenceIntervalforTwoPopulationProportions--ExampleThe95%confidenceintervalforπ1–π2is:Sincethisintervaldoesnotcontain0canbe95%confidentthetwoproportionsaredifferent.DCOVATestingfortheRatioOfTwoPopulationVariancesTestsforTwoPopulationVariancesFteststatisticH0:σ12=σ22H1:σ12≠σ22H0:σ12≤σ22H1:σ12>σ22*Hypotheses FSTATS12/S22S12=Varianceofsample1(thelargersamplevariance)n1=samplesizeofsample1S22=Varianceofsample2(thesmallersamplevariance)n2=samplesizeofsample2n1–1=numeratordegreesoffreedomn2–1=denominatordegreesoffreedomWhere:DCOVATheFcriticalvalue
isfoundfromtheFtableTherearetwodegreesoffreedomrequired:numeratoranddenominatorThelargersamplevarianceisalwaysthenumeratorWhenIntheFtable,numeratordegreesoffreedomdeterminethecolumndenominatordegreesoffreedomdeterminetherowTheFDistributiondf1=n1–1;df2=n2–1DCOVAFindingtheRejectionRegionH0:σ12=σ22H1:σ12≠σ22H0:σ12≤σ22H1:σ12>σ22F
0
Fα
RejectH0DonotrejectH0RejectH0ifFSTAT>FαF
0
/2RejectH0DonotrejectH0Fα/2
RejectH0ifFSTAT>Fα/2DCOVAFTest:AnExampleYouareafinancialanalystforabrokeragefirm.YouwanttocomparedividendyieldsbetweenstockslistedontheNYSE&NASDAQ.Youcollectthefollowingdata:
NYSE
NASDAQ
Number 21 25Mean 3.27 2.53Stddev 1.30 1.16Isthereadifferenceinthe variancesbetweentheNYSE &NASDAQatthe
=
0.05level?DCOVAFormthehypothesistest:H0:σ21=σ22(thereisnodifferencebetweenvariances)H1:σ21≠σ22(thereisadifferencebetweenvariances)FTest:ExampleSolutionFindtheFcriticalvaluefor
=0.05:Numeratord.f.=n1–1=21–1=20Denominatord.f.=n2–1=25–1=24Fα/2=F.025,20,24=2.33DCOVATheteststatisticis:0
/2=.025F0.025=2.33RejectH0DonotrejectH0H0:σ12=σ22H1:σ12
≠
σ22FTest:ExampleSolutionFSTAT=1.256isnotintherejectionregion,sowedonotrejectH0(continued)Conclusion:Thereisnotsufficientevidenceofadifferenceinvariancesat=.05F
DCOVAGeneralANOVASettingInvestigatorcontrolsoneormorefactorsofinterestEachfactorcontainstwoormorelevelsLevelscanbenumericalorcategoricalDifferentlevelsproducedifferentgroupsThinkofeachgroupasasamplefromadifferentpopulationObserveeffectsonthedependentvariableArethegroupsthesame?Experimentaldesign:theplanusedtocollectthedataDCOVACompletelyRandomizedDesignExperimentalunits(subjects)areassignedrandomlytogroupsSubjectsareassumedhomogeneousOnlyonefactororindependentvariableWithtwoormorelevelsAnalyzedbyone-factoranalysisofvariance(ANOVA)DCOVAOne-WayAnalysisofVarianceEvaluatethedifferenceamongthemeansofthreeormoregroupsExamples:Numberofaccidentsfor1st,2nd,and3rdshiftExpectedmileageforfivebrandsoftiresAssumptionsPopulationsarenormallydistributedPopulationshaveequalvariancesSamplesarerandomlyandindependentlydrawnDCOVAHypothesesofOne-WayANOVA
Allpopulationmeansareequali.e.,nofactoreffect(novariationinmeansamonggroups)
Atleastonepopulationmeanisdifferenti.e.,thereisafactoreffectDoesnotmeanthatallpopulationmeansaredifferent(somepairsmaybethesame)DCOVAOne-WayANOVAWhenTheNullHypothesisisTrueAllMeansarethesame:(NoFactorEffect)DCOVAOne-WayANOVAWhenTheNullHypothesisisNOTtrueAtleastoneofthemeansisdifferent(FactorEffectispresent)or(continued)DCOVAPartitioningtheVariationTotalvariationcanbesplitintotwoparts:SST=TotalSumofSquares
(Totalvariation)SSA=SumofSquaresAmongGroups
(Among-groupvariation)SSW=SumofSquaresWithinGroups
(Within-groupvariation)SST=SSA+SSWDCOVAPartitioningtheVariationTotalVariation=theaggregatevariationoftheindividualdatavaluesacrossthevariousfactorlevels(SST)Within-GroupVariation=variationthatexistsamongthedatavalueswithinaparticularfactorlevel(SSW)Among-GroupVariation=variationamongthefactorsamplemeans(SSA)SST=SSA+SSW(continued)DCOVAPartitionofTotalVariationVariationDuetoFactor(SSA)VariationDuetoRandomError(SSW)TotalVariation(SST)=+DCOVATotalSumofSquaresWhere:
SST=Totalsumofsquares c=numberofgroupsorlevels
nj=numberofvaluesingroupj
Xij=ithobservationfromgroupj
X=grandmean(meanofalldatavalues)SST=SSA+SSWDCOVATotalVariation(continued)DCOVAAmong-GroupVariationWhere:
SSA=Sumofsquaresamonggroups c=numberofgroups
nj=samplesizefromgroupj
Xj=samplemeanfromgroupj
X=grandmean(meanofalldatavalues)SST=SSA+SSWDCOVAAmong-GroupVariationVariationDuetoDifferencesAmongGroupsMeanSquareAmong=SSA/degreesoffreedom(continued)DCOVAAmong-GroupVariation(continued)DCOVAWithin-GroupVariationWhere:
SSW=Sumofsquareswithingroups c=numberofgroups
nj=samplesizefromgroupj
Xj=samplemeanfromgroupj
Xij=ithobservationingroupjSST=SSA+SSWDCOVAWithin-GroupVariationSummingthevariationwithineachgroupandthenaddingoverallgroupsMeanSquareWithin=SSW/degreesoffreedom(continued)DCOVAWithin-GroupVariation(continued)DCOVAObtainingtheMeanSquaresTheMeanSquaresareobtainedbydividingthevarioussumofsquaresbytheirassociateddegreesoffreedomMeanSquareAmong(d.f.=c-1)MeanSquareWithin(d.f.=n-c)MeanSquareTotal(d.f.=n-1)DCOVAOne-WayANOVATableSourceofVariationSumOfSquaresDegreesofFreedomMeanSquare(Variance)AmongGroupsc-1MSA=WithinGroupsSSWn-cMSW=TotalSSTn–1SSAMSAMSWFc=numberofgroupsn=sumofthesamplesizesfromallgroupsdf=degreesoffreedomSSAc-1SSWn-cFSTAT=DCOVAOne-WayANOVA
FTestStatisticTeststatistic
MSAismeansquaresamonggroups MSWismeansquareswithingroupsDegreesoffreedomdf1=c–1(c=numberofgroups)df2=n–c(n=sumofsamplesizesfromallpopulations)H0:μ1=μ2=…
=μcH1:AtleasttwopopulationmeansaredifferentDCOVAInterpretingOne-WayANOVA
FStatisticTheFstatisticistheratiooftheamongestimateofvarianceandthewithinestimateofvarianceTheratiomustalwaysbepositivedf1=c-1willtypicallybesmall
df2=n-cwilltypicallybelargeDecisionRule:RejectH0ifFSTAT>Fα,otherwisedonotrejectH00
RejectH0DonotrejectH0FαDCOVAOne-WayANOVA
FTestExampleYouwanttoseeifthreedifferentgolfclubsyielddifferentdistances.Yourandomlyselectfivemeasurementsfromtrialsonanautomateddrivingmachineforeachclub.Atthe0.05significancelevel,isthereadifferenceinmeandistance?
Club1
Club2
Club3
254 234 200
263 218 222
241 235 197
237 227 206
251 216 204DCOVA?????One-WayANOVAExample:
ScatterPlot270260250240230220210200190??????????Distance
Club1
Club2
Club3
254 234 200
263 218 222
241 235 197
237 227 206
251 216 204Club123DCOVAOne-WayANOVAExampleComputations
Club1
Club2
Club3
254 234 200
263 218 222
241 235 197
237 227 206
251 216 204X1=249.2X2=226.0X3=205.8X=227.0n1=5n2=5n3=5n=15c=3SSA=5(249.2–227)2+5(226–227)2+5(205.8–227)2=4716.4SSW=(254–249.2)2+(263–249.2)2+…+(204–205.8)2=1119.6MSA=4716.4/(3-1)=2358.2MSW=1119.6/(15-3)=93.3DCOVAOne-WayANOVAExampleSolutionH0:μ1=μ2=μ3H1:μjnotallequal
=0.05df1=2df2=12TestStatistic:Decision:Conclusion:RejectH0at
=0.05Thereisevidencethatatleastoneμjdiffersfromtherest0
=.05F0.05=3.89RejectH0DonotrejectH0CriticalValue:Fα
=3.89DCOVASUMMARYGroupsCountSumAverageVarianceClub151246249.2108.2Club25113022677.5Club351029205.894.2ANOVASourceofVariationSSdfMSFP-valueFcritBetweenGroups4716.422358.225.2750.00003.89WithinGroups1119.61293.3Total5836.014
One-WayANOVAExcelOutputDCOVAOne-WayANOVA
MinitabOutputOne-wayANOVA:DistanceversusClubSourceDFSSMSFPClub24716.42358.225.280.000Error121119.693.3Total145836.0S=9.659R-Sq=80.82%R-Sq(adj)=77.62%Individual95%CIsForMeanBasedonPooledStDevLevelNMeanStDev-------+---------+---------+---------+--15249.2010.40(-----*-----)25226.008.80(-----*-----)35205.809.71(-----*-----)-------+---------+---------+---------+--208224240256PooledStDev=9.66DCOVAANOVAAssumptionsRandomnessandIndependenceSelectrandomsamplesfromthecgroups(orrandomlyassignthelevels)NormalityThesamplevaluesforeachgrouparefromanormalpopulationHomogeneityofVarianceAllpopulationssampledfromhavethesamevarianceCanbetestedwithLevene’sTestDCOVAANOVAAssumptions
Levene’sTestTeststheassumptionthatthevariancesofeachpopulationareequal.First,definethenullandalternativehypotheses:H0:σ21=σ22=…=σ2cH1:Notallσ2jareequalSecond,computetheabsolutevalueofthedifferencebetweeneach
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 消防工程技術協議
- 產品研發合作協議及研發成果分配說明
- 農產品網絡銷售渠道搭建及維護協議
- 電子游戲代理授權合作協議
- 全新購銷協議變更
- 森林林業種植管理與病蟲害防治合作協議
- 農村環境監測信息化協議
- 股權轉讓協議轉讓控股權
- 健康飲食營養品供應合同
- 高品質食品供應鏈管理合同
- GB/T 23445-2009聚合物水泥防水涂料
- 中醫基礎理論(中英文對照)
- 生理學(全套課件)
- 香港公司條例
- 污水處理系統工程合同范本
- 德能勤績廉個人總結的
- 二年級美術上冊課件 《3.我的手印畫》 贛美版 (共18張PPT)
- Q∕SY 126-2014 油田水處理用緩蝕阻垢劑技術規范
- GB∕T 3216-2016 回轉動力泵 水力性能驗收試驗 1級、2級和3級
- 電子電氣評估規范-最新
- 黑布林繪本 Dad-for-Sale 出售爸爸課件
評論
0/150
提交評論