




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省巴中市通江中學2025屆初三下學期模擬數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A.正五邊形B.平行四邊形C.矩形D.等邊三角形2.如圖,已知的周長等于,則它的內接正六邊形ABCDEF的面積是()A. B. C. D.3.下列四個多項式,能因式分解的是()A.a-1 B.a2+1C.x2-4y D.x2-6x+94.如圖,在Rt△ABC中,∠ACB=90°,點D,E分別是AB,BC的中點,點F是BD的中點.若AB=10,則EF=()A.2.5 B.3 C.4 D.55.如圖,在四邊形ABCD中,對角線AC⊥BD,垂足為O,點E、F、G、H分別為邊AD、AB、BC、CD的中點.若AC=10,BD=6,則四邊形EFGH的面積為()A.20 B.15 C.30 D.606.如圖,點A,B在反比例函數y=1x(x>0)的圖象上,點C,D在反比例函數y=A.4 B.3 C.2 D.37.明明和亮亮都在同一直道A、B兩地間做勻速往返走鍛煉明明的速度小于亮亮的速度忽略掉頭等時間明明從A地出發,同時亮亮從B地出發圖中的折線段表示從開始到第二次相遇止,兩人之間的距離米與行走時間分的函數關系的圖象,則A.明明的速度是80米分 B.第二次相遇時距離B地800米C.出發25分時兩人第一次相遇 D.出發35分時兩人相距2000米8.人的大腦每天能記錄大約8600萬條信息,數據8600用科學記數法表示為()A.0.86×104 B.8.6×102 C.8.6×103 D.86×1029.下列計算結果是x5的為()A.x10÷x2B.x6﹣xC.x2?x3D.(x3)210.下列命題是真命題的個數有()①菱形的對角線互相垂直;②平分弦的直徑垂直于弦;③若點(5,﹣5)是反比例函數y=圖象上的一點,則k=﹣25;④方程2x﹣1=3x﹣2的解,可看作直線y=2x﹣1與直線y=3x﹣2交點的橫坐標.A.1個 B.2個 C.3個 D.4個二、填空題(共7小題,每小題3分,滿分21分)11.分解因式:x2y﹣4xy+4y=_____.12.已知一元二次方程x2-4x-3=0的兩根為m,n,則-mn+=.13.在平面直角坐標系中,點A的坐標是(-1,2).作點A關于x軸的對稱點,得到點A1,再將點A1向下平移4個單位,得到點A2,則點A2的坐標是_________.14.如圖是由6個棱長均為1的正方體組成的幾何體,它的主視圖的面積為_____.15.如圖的三角形紙片中,AB=8cm,BC=6cm,AC=5cm.沿過點B的直線折疊三角形,使點C落在AB邊的點E處,折痕為BD.則△AED的周長為____cm.16.已知關于x的方程1-xx-217.有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.三、解答題(共7小題,滿分69分)18.(10分)制作一種產品,需先將材料加熱達到60℃后,再進行操作,設該材料溫度為y(℃)從加熱開始計算的時間為x(min).據了解,當該材料加熱時,溫度y與時間x成一次函數關系:停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知在操作加熱前的溫度為15℃,加熱5分鐘后溫度達到60℃.分別求出將材料加熱和停止加熱進行操作時,y與x的函數關系式;根據工藝要求,當材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經歷了多少時間?19.(5分)如圖,已知一次函數的圖象與反比例函數的圖象交于點,且與軸交于點;點在反比例函數的圖象上,以點為圓心,半徑為的作圓與軸,軸分別相切于點、.(1)求反比例函數和一次函數的解析式;(2)請連結,并求出的面積;(3)直接寫出當時,的解集.20.(8分)撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A,B,C,D四個等級.請根據兩幅統計圖中的信息回答下列問題:(1)本次抽樣調查共抽取了多少名學生?(2)求測試結果為C等級的學生數,并補全條形圖;(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名?(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.21.(10分)“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時,以高出進價的50%標價.已知按標價九折銷售該型號自行車8輛與將標價直降100元銷售7輛獲利相同.求該型號自行車的進價和標價分別是多少元?若該型號自行車的進價不變,按(1)中的標價出售,該店平均每月可售出51輛;若每輛自行車每降價20元,每月可多售出3輛,求該型號自行車降價多少元時,每月獲利最大?最大利潤是多少?22.(10分)漳州市某中學對全校學生進行文明禮儀知識測試,為了解測試結果,隨機抽取部分學生的成績進行分析,將成績分為三個等級:不合格、一般、優秀,并繪制成如下兩幅統計圖(不完整).請你根據圖中所給的信息解答下列問題:請將以上兩幅統計圖補充完整;若“一般”和“優秀”均被視為達標成績,則該校被抽取的學生中有_▲人達標;若該校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?23.(12分)如圖,在菱形ABCD中,作于E,BF⊥CD于F,求證:.24.(14分)如圖,已知CD=CF,∠A=∠E=∠DCF=90°,求證:AD+EF=AE
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】分析:根據中心對稱圖形和軸對稱圖形對各選項分析判斷即可得解.詳解:A.正五邊形,不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.B.平行四邊形,是中心對稱圖形,不是軸對稱圖形,故本選項錯誤.C.矩形,既是中心對稱圖形又是軸對稱圖形,故本選項正確.D.等邊三角形,不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.點睛:本題考查了對中心對稱圖形和軸對稱圖形的判斷,我們要熟練掌握一些常見圖形屬于哪一類圖形,這樣在實際解題時,可以加快解題速度,也可以提高正確率.2、C【解析】
過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內接多邊形的性質可得∠AOB=60°,即可證明△AOB是等邊三角形,根據等邊三角形的性質可求出OH的長,根據S正六邊形ABCDEF=6S△OAB即可得出答案.【詳解】過點O作OH⊥AB于點H,連接OA,OB,設⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.此題考查了正多邊形與圓的性質.此題難度適中,注意掌握數形結合思想的應用.3、D【解析】試題分析:利用平方差公式及完全平方公式的結構特征判斷即可.試題解析:x2-6x+9=(x-3)2.故選D.考點:2.因式分解-運用公式法;2.因式分解-提公因式法.4、A【解析】
先利用直角三角形的性質求出CD的長,再利用中位線定理求出EF的長.【詳解】∵∠ACB=90°,D為AB中點∴CD=1∵點E、F分別為BC、BD中點∴EF=1故答案為:A.本題考查的知識點是直角三角形的性質和中位線定理,解題關鍵是尋找EF與題目已知長度的線段的數量關系.5、B【解析】
有一個角是直角的平行四邊形是矩形.利用中位線定理可得出四邊形EFGH是矩形,根據矩形的面積公式解答即可.【詳解】∵點E、F分別為四邊形ABCD的邊AD、AB的中點,∴EF∥BD,且EF=BD=1.同理求得EH∥AC∥GF,且EH=GF=AC=5,又∵AC⊥BD,∴EF∥GH,FG∥HE且EF⊥FG.四邊形EFGH是矩形.∴四邊形EFGH的面積=EF?EH=1×5=2,即四邊形EFGH的面積是2.故選B.本題考查的是中點四邊形.解題時,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一個角是直角的平行四邊形是矩形;(2)有三個角是直角的四邊形是矩形;(1)對角線互相平分且相等的四邊形是矩形.6、B【解析】
首先根據A,B兩點的橫坐標,求出A,B兩點的坐標,進而根據AC//BD//y軸,及反比例函數圖像上的點的坐標特點得出C,D兩點的坐標,從而得出AC,BD的長,根據三角形的面積公式表示出S△OAC,S△ABD的面積,再根據△OAC與△ABD的面積之和為32【詳解】把x=1代入y=1∴A(1,1),把x=2代入y=1x得:y=∴B(2,12∵AC//BD//y軸,∴C(1,K),D(2,k2∴AC=k-1,BD=k2-1∴S△OAC=12S△ABD=12(k2-又∵△OAC與△ABD的面積之和為32∴12(k-1)×1+12(k2-1故答案為B.:此題考查了反比例函數系數k的幾何意義,以及反比例函數圖象上點的坐標特征,熟練掌握反比例函數k的幾何意義是解本題的關鍵.7、B【解析】
C、由二者第二次相遇的時間結合兩次相遇分別走過的路程,即可得出第一次相遇的時間,進而得出C選項錯誤;A、當時,出現拐點,顯然此時亮亮到達A地,利用速度路程時間可求出亮亮的速度及兩人的速度和,二者做差后可得出明明的速度,進而得出A選項錯誤;B、根據第二次相遇時距離B地的距離明明的速度第二次相遇的時間、B兩地間的距離,即可求出第二次相遇時距離B地800米,B選項正確;D、觀察函數圖象,可知:出發35分鐘時亮亮到達A地,根據出發35分鐘時兩人間的距離明明的速度出發時間,即可求出出發35分鐘時兩人間的距離為2100米,D選項錯誤.【詳解】解:第一次相遇兩人共走了2800米,第二次相遇兩人共走了米,且二者速度不變,
,
出發20分時兩人第一次相遇,C選項錯誤;
亮亮的速度為米分,
兩人的速度和為米分,
明明的速度為米分,A選項錯誤;
第二次相遇時距離B地距離為米,B選項正確;
出發35分鐘時兩人間的距離為米,D選項錯誤.
故選:B.本題考查了一次函數的應用,觀察函數圖象,逐一分析四個選項的正誤是解題的關鍵.8、C【解析】
科學記數法就是將一個數字表示成a×10的n次冪的形式,其中1≤|a|<10,n表示整數.n為整數位數減1,即從左邊第一位開始,在首位非零的后面加上小數點,再乘以10的n次冪.【詳解】數據8600用科學記數法表示為8.6×103故選C.用科學記數法表示一個數的方法是(1)確定a:a是只有一位整數的數;(2)確定n:當原數的絕對值≥10時,n為正整數,n等于原數的整數位數減1;當原數的絕對值<1時,n為負整數,n的絕對值等于原數中左起第一個非零數前零的個數(含整數位數上的零).9、C【解析】解:A.x10÷x2=x8,不符合題意;B.x6﹣x不能進一步計算,不符合題意;C.x2x3=x5,符合題意;D.(x3)2=x6,不符合題意.故選C.10、C【解析】
根據菱形的性質、垂徑定理、反比例函數和一次函數進行判斷即可.【詳解】解:①菱形的對角線互相垂直是真命題;②平分弦(非直徑)的直徑垂直于弦,是假命題;③若點(5,-5)是反比例函數y=圖象上的一點,則k=-25,是真命題;④方程2x-1=3x-2的解,可看作直線y=2x-1與直線y=3x-2交點的橫坐標,是真命題;故選C.本題考查了命題與定理:判斷一件事情的語句,叫做命題.許多命題都是由題設和結論兩部分組成,題設是已知事項,結論是由已知事項推出的事項,一個命題可以寫成“如果…那么…”形式.一些命題的正確性是用推理證實的,這樣的真命題叫做定理.二、填空題(共7小題,每小題3分,滿分21分)11、y(x-2)2【解析】
先提取公因式y,再根據完全平方公式分解即可得.【詳解】原式==,故答案為.12、1【解析】試題分析:由m與n為已知方程的解,利用根與系數的關系求出m+n=4,mn=﹣3,將所求式子利用完全平方公式變形后,即﹣mn+=﹣3mn=16+9=1.故答案為1.考點:根與系數的關系.13、(-1,-6)【解析】
直接利用關于x軸對稱點的性質得出點A1坐標,再利用平移的性質得出答案.【詳解】∵點A的坐標是(-1,2),作點A關于x軸的對稱點,得到點A1,
∴A1(-1,-2),
∵將點A1向下平移4個單位,得到點A2,
∴點A2的坐標是:(-1,-6).
故答案為:(-1,-6).解決本題的關鍵是掌握好對稱點的坐標規律:(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數;(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數;(3)關于原點對稱的點,橫坐標與縱坐標都互為相反數.14、1.【解析】
根據立體圖形畫出它的主視圖,再求出面積即可.【詳解】主視圖如圖所示,∵主視圖是由1個棱長均為1的正方體組成的幾何體,∴主視圖的面積為1×12=1.故答案為:1.本題是簡單組合體的三視圖,主要考查了立體圖的左視圖,解本題的關鍵是畫出它的左視圖.15、7【解析】
根據翻折變換的性質可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周長=AC+AE.【詳解】∵折疊這個三角形點C落在AB邊上的點E處,折痕為BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周長=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案為:7.本題考查了翻折變換的性質,翻折前后對應邊相等,對應角相等.16、k≠1【解析】試題分析:因為1-xx-2+2=k2-x,所以1-x+2(x-2)=-k,所以1-x+2x-4=-k,所以x=3-k,所以x=3-k,因為原方程有解,所以考點:分式方程.17、【解析】
根據題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數目以及能搭成一個三角形的情況數目,根據概率的計算方法,計算可得答案.【詳解】根據題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數與總情況數之比.三、解答題(共7小題,滿分69分)18、(1);(2)20分鐘.【解析】
(1)材料加熱時,設y=ax+15(a≠0),由題意得60=5a+15,解得a=9,則材料加熱時,y與x的函數關系式為y=9x+15(0≤x≤5).停止加熱時,設y=(k≠0),由題意得60=,解得k=300,則停止加熱進行操作時y與x的函數關系式為y=(x≥5);(2)把y=15代入y=,得x=20,因此從開始加熱到停止操作,共經歷了20分鐘.答:從開始加熱到停止操作,共經歷了20分鐘.19、(1),;(2)4;(3).【解析】
(1)連接CB,CD,依據四邊形BODC是正方形,即可得到B(1,2),點C(2,2),利用待定系數法即可得到反比例函數和一次函數的解析式;
(2)依據OB=2,點A的橫坐標為-4,即可得到△AOB的面積為:2×4×=4;
(3)依據數形結合思想,可得當x<1時,k1x+b?>1的解集為:-4<x<1.【詳解】解:(1)如圖,連接,,∵⊙C與軸,軸相切于點D,,且半徑為,,,∴四邊形是正方形,,,點,把點代入反比例函數中,解得:,∴反比例函數解析式為:,∵點在反比例函數上,把代入中,可得,,把點和分別代入一次函數中,得出:,解得:,∴一次函數的表達式為:;(2)如圖,連接,,點的橫坐標為,的面積為:;(3)由,根據圖象可知:當時,的解集為:.本題考查了反比例函數與一次函數的交點依據待定系數法求函數解析式,解題的關鍵是求出C,B點坐標.20、(1)50;(2)16;(3)56(4)見解析【解析】
(1)用A等級的頻數除以它所占的百分比即可得到樣本容量;
(2)用總人數分別減去A、B、D等級的人數得到C等級的人數,然后補全條形圖;(3)用700乘以D等級的百分比可估計該中學八年級學生中體能測試結果為D等級的學生數;
(4)畫樹狀圖展示12種等可能的結果數,再找出抽取的兩人恰好都是男生的結果數,然后根據概率公式求解.【詳解】(1)10÷20%=50(名)答:本次抽樣調查共抽取了50名學生.(2)50-10-20-4=16(名)答:測試結果為C等級的學生有16名.圖形統計圖補充完整如下圖所示:(3)700×=56(名)答:估計該中學八年級學生中體能測試結果為D等級的學生有56名.(4)畫樹狀圖為:
共有12種等可能的結果數,其中抽取的兩人恰好都是男生的結果數為2,
所以抽取的兩人恰好都是男生的概率=.本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.也考查了統計圖.21、(1)進價為1000元,標價為1500元;(2)該型號自行車降價80元出售每月獲利最大,最大利潤是26460元.【解析】分析:(1)設進價為x元,則標價是1.5x元,根據關鍵語句:按標價九折銷售該型號自行車8輛的利潤是1.5x×0.9×8-8x,將標價直降100元銷售7輛獲利是(1.5x-100)×7-7x,根據利潤相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x,再解方程即可得到進價,進而得到標價;(2)設該型號自行車降價a元,利潤為w元,利用銷售量×每輛自行車的利潤=總利潤列出函數關系式,再利用配方法求最值即可.詳解:(1)設進價為x元,則標價是1.5x元,由題意得:1.5x×0.9×8-8x=(1.5x-10
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CI 456-2024數字孿生水利基礎信息編碼河流堤防代碼
- 黃金公司合同范本4篇
- 上海市安全員C證考試題庫及答案
- 香水草種苗采購合同3篇
- 臨床護理心肺復蘇注意事項
- T/ZHCA 003-2018化妝品影響經表皮水分流失測試方法
- 創新創業衛生巾
- 重慶科瑞制藥(集團)有限公司招聘筆試題庫2025
- T/YNIA 022-2024閃蒸法非織造布
- 2025年智能制造與工業互聯網知識測試試題及答案
- 2025購銷茶葉合同范本
- 2025年宣城郎溪開創控股集團有限公司下屬子公司招聘12人筆試參考題庫附帶答案詳解
- 山東濟南歷年中考作文題與審題指導(2005-2021)
- 風冷模塊培訓課件
- 職業技術學院2024級工業互聯網技術專業人才培養方案
- 羅森加盟合同協議
- 2025年中考英語押題預測卷(徐州專用)(原卷版)
- 2025-2030中國馬丁靴行業發展分析及發展前景與投資研究報告
- 锝99mTc替曲膦注射液-藥品臨床應用解讀
- 武漢各區2023-2024學年九下化學四調壓軸題分類匯編-第8題選擇題
- 腦血管造影術的術前及術后護理
評論
0/150
提交評論