海南省華中師大瓊中附中2024-2025學年高三最后一卷高三數學試題練習卷含解析_第1頁
海南省華中師大瓊中附中2024-2025學年高三最后一卷高三數學試題練習卷含解析_第2頁
海南省華中師大瓊中附中2024-2025學年高三最后一卷高三數學試題練習卷含解析_第3頁
海南省華中師大瓊中附中2024-2025學年高三最后一卷高三數學試題練習卷含解析_第4頁
海南省華中師大瓊中附中2024-2025學年高三最后一卷高三數學試題練習卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

海南省華中師大瓊中附中2024-2025學年高三最后一卷高三數學試題練習卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓:的左、右焦點分別為,,點,在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.2.已知雙曲線滿足以下條件:①雙曲線E的右焦點與拋物線的焦點F重合;②雙曲線E與過點的冪函數的圖象交于點Q,且該冪函數在點Q處的切線過點F關于原點的對稱點.則雙曲線的離心率是()A. B. C. D.3.定義在R上的函數y=fx滿足fx≤2x-1A. B. C. D.4.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數列的前項和恒成立,則實數的取值范圍是()A. B. C. D.5.已知函數的部分圖象如圖所示,則()A. B. C. D.6.已知數列滿足,(),則數列的通項公式()A. B. C. D.7.已知雙曲線的左右焦點分別為,,以線段為直徑的圓與雙曲線在第二象限的交點為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.8.將函數向左平移個單位,得到的圖象,則滿足()A.圖象關于點對稱,在區間上為增函數B.函數最大值為2,圖象關于點對稱C.圖象關于直線對稱,在上的最小值為1D.最小正周期為,在有兩個根9.隨著人民生活水平的提高,對城市空氣質量的關注度也逐步增大,下圖是某城市月至月的空氣質量檢測情況,圖中一、二、三、四級是空氣質量等級,一級空氣質量最好,一級和二級都是質量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數超過天的月份有個B.第二季度與第一季度相比,空氣達標天數的比重下降了C.8月是空氣質量最好的一個月D.6月份的空氣質量最差.10.如圖,在中,,且,則()A.1 B. C. D.11.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.812.下列與的終邊相同的角的表達式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)二、填空題:本題共4小題,每小題5分,共20分。13.在四面體中,分別是的中點.則下述結論:①四面體的體積為;②異面直線所成角的正弦值為;③四面體外接球的表面積為;④若用一個與直線垂直,且與四面體的每個面都相交的平面去截該四面體,由此得到一個多邊形截面,則該多邊形截面面積最大值為.其中正確的有_____.(填寫所有正確結論的編號)14.設α、β為互不重合的平面,m,n是互不重合的直線,給出下列四個命題:①若m∥n,則m∥α;②若m?α,n?α,m∥β,n∥β,則α∥β;③若α∥β,m?α,n?β,則m∥n;④若α⊥β,α∩β=m,n?α,m⊥n,則n⊥β;其中正確命題的序號為_____.15.已知點是拋物線上動點,是拋物線的焦點,點的坐標為,則的最小值為______________.16.已知集合,則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某企業對設備進行升級改造,現從設備改造前后生產的大量產品中各抽取了100件產品作為樣本,檢測一項質量指標值,該項質量指標值落在區間內的產品視為合格品,否則視為不合格品,如圖是設備改造前樣本的頻率分布直方圖,下表是設備改造后樣本的頻數分布表.圖:設備改造前樣本的頻率分布直方圖表:設備改造后樣本的頻率分布表質量指標值頻數2184814162(1)求圖中實數的值;(2)企業將不合格品全部銷毀后,對合格品進行等級細分,質量指標值落在區間內的定為一等品,每件售價240元;質量指標值落在區間或內的定為二等品,每件售價180元;其他的合格品定為三等品,每件售價120元,根據表1的數據,用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產品中抽到一件相應等級產品的概率.若有一名顧客隨機購買兩件產品支付的費用為(單位:元),求的分布列和數學期望.18.(12分)已知函數.(1)討論的單調性;(2)函數,若對于,使得成立,求的取值范圍.19.(12分)已知函數.(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函數的定義域和值域.20.(12分)在三棱柱中,四邊形是菱形,,,,,點M、N分別是、的中點,且.(1)求證:平面平面;(2)求四棱錐的體積.21.(12分)求下列函數的導數:(1)(2)22.(10分)如圖所示,直角梯形中,,,,四邊形為矩形,.(1)求證:平面平面;(2)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據可得四邊形為矩形,設,,根據橢圓的定義以及勾股定理可得,再分析的取值范圍,進而求得再求離心率的范圍即可.【詳解】設,,由,,知,因為,在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C本題主要考查了橢圓的定義運用以及構造齊次式求橢圓的離心率的問題,屬于中檔題.2.B【解析】

由已知可求出焦點坐標為,可求得冪函數為,設出切點通過導數求出切線方程的斜率,利用斜率相等列出方程,即可求出切點坐標,然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點為,F關于原點的對稱點;,,所以,,設,則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.本題考查雙曲線的性質,已知拋物線方程求焦點坐標,求冪函數解析式,直線的斜率公式及導數的幾何意義,考查了學生分析問題和解決問題的能力,難度一般.3.D【解析】

根據y=fx+1為奇函數,得到函數關于1,0中心對稱,排除AB,計算f1.5≤【詳解】y=fx+1為奇函數,即fx+1=-f-x+1,函數關于f1.5≤2故選:D.本題考查了函數圖像的識別,確定函數關于1,0中心對稱是解題的關鍵.4.B【解析】

由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:本題考查了向量數量積,點到直線的距離,數列求和等知識,是一道不錯的綜合題.5.A【解析】

先利用最高點縱坐標求出A,再根據求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結合0<φ,∴φ.∴.∴sin.故選:A.本題考查三角函數的據圖求式問題以及三角函數的公式變換.據圖求式問題要注意結合五點法作圖求解.屬于中檔題.6.A【解析】

利用數列的遞推關系式,通過累加法求解即可.【詳解】數列滿足:,,可得以上各式相加可得:,故選:.本題考查數列的遞推關系式的應用,數列累加法以及通項公式的求法,考查計算能力.7.B【解析】

先設直線與圓相切于點,根據題意,得到,再由,根據勾股定理求出,從而可得漸近線方程.【詳解】設直線與圓相切于點,因為是以圓的直徑為斜邊的圓內接三角形,所以,又因為圓與直線的切點為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡單性質即可,屬于??碱}型.8.C【解析】

由輔助角公式化簡三角函數式,結合三角函數圖象平移變換即可求得的解析式,結合正弦函數的圖象與性質即可判斷各選項.【詳解】函數,則,將向左平移個單位,可得,由正弦函數的性質可知,的對稱中心滿足,解得,所以A、B選項中的對稱中心錯誤;對于C,的對稱軸滿足,解得,所以圖象關于直線對稱;當時,,由正弦函數性質可知,所以在上的最小值為1,所以C正確;對于D,最小正周期為,當,,由正弦函數的圖象與性質可知,時僅有一個解為,所以D錯誤;綜上可知,正確的為C,故選:C.本題考查了三角函數式的化簡,三角函數圖象平移變換,正弦函數圖象與性質的綜合應用,屬于中檔題.9.D【解析】由圖表可知月空氣質量合格天氣只有天,月份的空氣質量最差.故本題答案選.10.C【解析】

由題可,所以將已知式子中的向量用表示,可得到的關系,再由三點共線,又得到一個關于的關系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C此題考查的是平面向量基本定理的有關知識,結合圖形尋找各向量間的關系,屬于中檔題.11.A【解析】

由三視圖還原出原幾何體,得出幾何體的結構特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關鍵.12.C【解析】

利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C(1)本題主要考查終邊相同的角的公式,意在考查學生對該知識的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.二、填空題:本題共4小題,每小題5分,共20分。13.①③④.【解析】

補圖成長方體,在長方體中利用割補法求四面體的體積,和外接球的表面積,以及異面直線的夾角,作出截面即可計算截面面積的最值.【詳解】根據四面體特征,可以補圖成長方體設其邊長為,,解得補成長,寬,高分別為的長方體,在長方體中:①四面體的體積為,故正確②異面直線所成角的正弦值等價于邊長為的矩形的對角線夾角正弦值,可得正弦值為,故錯;③四面體外接球就是長方體的外接球,半徑,其表面積為,故正確;④由于,故截面為平行四邊形,可得,設異面直線與所成的角為,則,算得,.故正確.故答案為:①③④.此題考查根據幾何體求體積,外接球的表面積,異面直線夾角和截面面積最值,關鍵在于熟練掌握點線面位置關系的處理方法,補圖法作為解決體積和外接球問題的常用方法,平常需要積累常見幾何體的補圖方法.14.④【解析】

根據直線和平面,平面和平面的位置關系依次判斷每個選項得到答案.【詳解】對于①,當m∥n時,由直線與平面平行的定義和判定定理,不能得出m∥α,①錯誤;對于②,當m?α,n?α,且m∥β,n∥β時,由兩平面平行的判定定理,不能得出α∥β,②錯誤;對于③,當α∥β,且m?α,n?β時,由兩平面平行的性質定理,不能得出m∥n,③錯誤;對于④,當α⊥β,且α∩β=m,n?α,m⊥n時,由兩平面垂直的性質定理,能夠得出n⊥β,④正確;綜上知,正確命題的序號是④.故答案為:④.本題考查了直線和平面,平面和平面的位置關系,意在考查學生的空間想象能力和推斷能力.15.【解析】

過點作垂直于準線,為垂足,則由拋物線的定義可得,則,為銳角.故當和拋物線相切時,的值最小.再利用直線的斜率公式、導數的幾何意義求得切點的坐標,從而求得的最小值.【詳解】解:由題意可得,拋物線的焦點,準線方程為,過點作垂直于準線,為垂足,則由拋物線的定義可得,則,為銳角.故當最小時,的值最小.設切點,由的導數為,則的斜率為,求得,可得,,,.故答案為:.本題考查拋物線的定義,性質的簡單應用,直線的斜率公式,導數的幾何意義,屬于中檔題.16.【解析】

由可得集合是奇數集,由此可以得出結果.【詳解】解:因為所以集合中的元素為奇數,所以.本題考查了集合的交集,解析出集合B中元素的性質是本題解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)詳見解析【解析】

(1)由頻率分布直方圖中所有頻率(小矩形面積)之和為1可計算出值;(2)由頻數分布表知一等品、二等品、三等品的概率分別為.,選2件產品,支付的費用的所有取值為240,300,360,420,480,由相互獨立事件的概率公式分別計算出概率,得概率分布列,由公式計算出期望.【詳解】解:(1)據題意,得所以(2)據表1分析知,從所有產品中隨機抽一件是一等品、二等品、三等品的概率分別為.隨機變量的所有取值為240,300,360,420,480.隨機變量的分布列為240300360420480所以(元)本題考查頻率分布直方圖,頻數分布表,考查隨機變量的概率分布列和數學期望,解題時掌握性質:頻率分布直方圖中所有頻率和為1.本題考查學生的數據處理能力,屬于中檔題.18.(1)當時,在上增;當時,在上減,在上增(2)【解析】

(1)求出導函數,分類討論確定的正負,確定單調區間;(2)題意說明,利用導數求出的最小值,由(1)可得的最小值,從而得出結論.【詳解】解:(1)定義域為當時,即在上增;當時,即得得綜上所述,當時,在上增;當時,在上減,在上增(2)由題在上增由(1)當時,在上增,所以此時無最小值;當時,在上減,在上增,即,解得綜上本題考查用導數求函數的單調區間,考查不等式恒成立問題,解題關鍵是掌握轉化與化歸思想,本題恒成立問題轉化為,求出兩函數的最小值后可得結論.19.(Ⅰ)(Ⅱ)函數的定義域為,值域為【解析】

(1)由為第二象限角及的值,利用同角三角函數間的基本關系求出及的值,再代入中即可得到結果.(2)函數解析式利用二倍角和輔助角公式將化為一個角的正弦函數,根據的范圍,即可得到函數值域.【詳解】解:(1)因為是第二象限角,且,所以.所以,所以.(2)函數的定義域為.化簡,得,因為,且,,所以,所以.所以函數的值域為.(注:或許有人會認為“因為,所以”,其實不然,因為.)本題考查同角三角函數的基本關系式,三角函數函數值求解以及定義域和值域的求解問題,涉及到利用二倍角公式和輔助角公式整理三角函數關系式的問題,意在考查學生的轉化能力和計算求解能力,屬于??碱}型.20.(1)證明見解析;(2).【解析】

(1)要證面面垂直需要先證

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論