




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數是定義域為的偶函數,且滿足,當時,,則函數在區間上零點的個數為()A.9 B.10 C.18 D.202.如圖,網格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.3.設集合,,則集合A. B. C. D.4.過拋物線的焦點F作兩條互相垂直的弦AB,CD,設P為拋物線上的一動點,,若,則的最小值是()A.1 B.2 C.3 D.45.下列結論中正確的個數是()①已知函數是一次函數,若數列通項公式為,則該數列是等差數列;②若直線上有兩個不同的點到平面的距離相等,則;③在中,“”是“”的必要不充分條件;④若,則的最大值為2.A.1 B.2 C.3 D.06.設,,,則()A. B. C. D.7.已知直三棱柱中,,,,則異面直線與所成的角的正弦值為().A. B. C. D.8.已知函數滿足當時,,且當時,;當時,且).若函數的圖象上關于原點對稱的點恰好有3對,則的取值范圍是()A. B. C. D.9.已知與函數和都相切,則不等式組所確定的平面區域在內的面積為()A. B. C. D.10.執行下面的程序框圖,如果輸入,,則計算機輸出的數是()A. B. C. D.11.函數的大致圖像為()A. B.C. D.12.將函數的圖像向左平移個單位長度后,得到的圖像關于坐標原點對稱,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設實數滿足約束條件,則的最大值為______.14.邊長為2的菱形中,與交于點O,E是線段的中點,的延長線與相交于點F,若,則______.15.設為定義在上的偶函數,當時,(為常數),若,則實數的值為______.16.已知復數,其中為虛數單位,則的模為_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點B落在矩形的邊上,記該點為E,且折痕的兩端點M,N分別在邊上.設,的面積為S.(1)將l表示成θ的函數,并確定θ的取值范圍;(2)求l的最小值及此時的值;(3)問當θ為何值時,的面積S取得最小值?并求出這個最小值.18.(12分)在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數學教師為了調查高三學生數學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數學時間不少于5小時的有19人,余下的人中,在檢測考試中數學平均成績不足120分的占,統計成績后得到如下列聯表:分數不少于120分分數不足120分合計線上學習時間不少于5小時419線上學習時間不足5小時合計45(1)請完成上面列聯表;并判斷是否有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”;(2)①按照分層抽樣的方法,在上述樣本中從分數不少于120分和分數不足120分的兩組學生中抽取9名學生,設抽到不足120分且每周線上學習時間不足5小時的人數是,求的分布列(概率用組合數算式表示);②若將頻率視為概率,從全校高三該次檢測數學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)19.(12分)在中,角所對的邊分別為,,的面積.(1)求角C;(2)求周長的取值范圍.20.(12分)2018年反映社會現實的電影《我不是藥神》引起了很大的轟動,治療特種病的創新藥研發成了當務之急.為此,某藥企加大了研發投入,市場上治療一類慢性病的特效藥品的研發費用(百萬元)和銷量(萬盒)的統計數據如下:研發費用(百萬元)2361013151821銷量(萬盒)1122.53.53.54.56(1)求與的相關系數精確到0.01,并判斷與的關系是否可用線性回歸方程模型擬合?(規定:時,可用線性回歸方程模型擬合);(2)該藥企準備生產藥品的三類不同的劑型,,,并對其進行兩次檢測,當第一次檢測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設經過兩次檢測后,,三類劑型合格的種類數為,求的數學期望.附:(1)相關系數(2),,,.21.(12分)在極坐標系中,直線的極坐標方程為,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,曲線的參數方程為(為參數),求直線與曲線的交點的直角坐標.22.(10分)一年之計在于春,一日之計在于晨,春天是播種的季節,是希望的開端.某種植戶對一塊地的個坑進行播種,每個坑播3粒種子,每粒種子發芽的概率均為,且每粒種子是否發芽相互獨立.對每一個坑而言,如果至少有兩粒種子發芽,則不需要進行補播種,否則要補播種.(1)當取何值時,有3個坑要補播種的概率最大?最大概率為多少?(2)當時,用表示要補播種的坑的個數,求的分布列與數學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由已知可得函數f(x)的周期與對稱軸,函數F(x)=f(x)在區間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,作出函數f(x)與g(x)的圖象如圖,數形結合即可得到答案.【詳解】函數F(x)=f(x)在區間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,由f(x)=f(2﹣x),得函數f(x)圖象關于x=1對稱,∵f(x)為偶函數,取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數周期為2.又∵當x∈[0,1]時,f(x)=x,且f(x)為偶函數,∴當x∈[﹣1,0]時,f(x)=﹣x,g(x),作出函數f(x)與g(x)的圖象如圖:由圖可知,兩函數圖象共10個交點,即函數F(x)=f(x)在區間上零點的個數為10.故選:B.【點睛】本題考查函數的零點與方程根的關系,考查數學轉化思想方法與數形結合的解題思想方法,屬于中檔題.2、D【解析】
根據三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構成,該多面體體積為.故選D.【點睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎題.3、B【解析】
先求出集合和它的補集,然后求得集合的解集,最后取它們的交集得出結果.【詳解】對于集合A,,解得或,故.對于集合B,,解得.故.故選B.【點睛】本小題主要考查一元二次不等式的解法,考查對數不等式的解法,考查集合的補集和交集的運算.對于有兩個根的一元二次不等式的解法是:先將二次項系數化為正數,且不等號的另一邊化為,然后通過因式分解,求得對應的一元二次方程的兩個根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.4、C【解析】
設直線AB的方程為,代入得:,由根與系數的關系得,,從而得到,同理可得,再利用求得的值,當Q,P,M三點共線時,即可得答案.【詳解】根據題意,可知拋物線的焦點為,則直線AB的斜率存在且不為0,設直線AB的方程為,代入得:.由根與系數的關系得,,所以.又直線CD的方程為,同理,所以,所以.故.過點P作PM垂直于準線,M為垂足,則由拋物線的定義可得.所以,當Q,P,M三點共線時,等號成立.故選:C.【點睛】本題考查直線與拋物線的位置關系、焦半徑公式的應用,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意取最值的條件.5、B【解析】
根據等差數列的定義,線面關系,余弦函數以及基本不等式一一判斷即可;【詳解】解:①已知函數是一次函數,若數列的通項公式為,可得為一次項系數),則該數列是等差數列,故①正確;②若直線上有兩個不同的點到平面的距離相等,則與可以相交或平行,故②錯誤;③在中,,而余弦函數在區間上單調遞減,故“”可得“”,由“”可得“”,故“”是“”的充要條件,故③錯誤;④若,則,所以,當且僅當時取等號,故④正確;綜上可得正確的有①④共2個;故選:B【點睛】本題考查命題的真假判斷,主要是正弦定理的運用和等比數列的求和公式、等差數列的定義和不等式的性質,考查運算能力和推理能力,屬于中檔題.6、A【解析】
先利用換底公式將對數都化為以2為底,利用對數函數單調性可比較,再由中間值1可得三者的大小關系.【詳解】,,,因此,故選:A.【點睛】本題主要考查了利用對數函數和指數函數的單調性比較大小,屬于基礎題.7、C【解析】
設M,N,P分別為和的中點,得出的夾角為MN和NP夾角或其補角,根據中位線定理,結合余弦定理求出和的余弦值再求其正弦值即可.【詳解】根據題意畫出圖形:設M,N,P分別為和的中點,則的夾角為MN和NP夾角或其補角可知,.作BC中點Q,則為直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故選:C【點睛】此題考查異面直線夾角,關鍵點通過平移將異面直線夾角轉化為同一平面內的夾角,屬于較易題目.8、C【解析】
先作出函數在上的部分圖象,再作出關于原點對稱的圖象,分類利用圖像列出有3個交點時滿足的條件,解之即可.【詳解】先作出函數在上的部分圖象,再作出關于原點對稱的圖象,如圖所示,當時,對稱后的圖象不可能與在的圖象有3個交點;當時,要使函數關于原點對稱后的圖象與所作的圖象有3個交點,則,解得.故選:C.【點睛】本題考查利用函數圖象解決函數的交點個數問題,考查學生數形結合的思想、轉化與化歸的思想,是一道中檔題.9、B【解析】
根據直線與和都相切,求得的值,由此畫出不等式組所表示的平面區域以及圓,由此求得正確選項.【詳解】.設直線與相切于點,斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數得,化簡得③.構造函數,,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應的區域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區域在內的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B【點睛】本小題主要考查根據公共切線求參數,考查不等式組表示區域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數形結合的數學思想方法,考查分析思考與解決問題的能力,屬于難題.10、B【解析】
先明確該程序框圖的功能是計算兩個數的最大公約數,再利用輾轉相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數,所以,,,故當輸入,,則計算機輸出的數是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.11、D【解析】
通過取特殊值逐項排除即可得到正確結果.【詳解】函數的定義域為,當時,,排除B和C;當時,,排除A.故選:D.【點睛】本題考查圖象的判斷,取特殊值排除選項是基本手段,屬中檔題.12、B【解析】
由余弦的二倍角公式化簡函數為,要想在括號內構造變為正弦函數,至少需要向左平移個單位長度,即為答案.【詳解】由題可知,對其向左平移個單位長度后,,其圖像關于坐標原點對稱故的最小值為故選:B【點睛】本題考查三角函數圖象性質與平移變換,還考查了余弦的二倍角公式逆運用,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
試題分析:作出不等式組所表示的平面區域如圖,當直線過點時,最大,且考點:線性規劃.14、【解析】
取基向量,,然后根據三點共線以及向量加減法運算法則將,表示為基向量后再相乘可得.【詳解】如圖:設,又,且存在實數使得,,,,,,故答案為:.【點睛】本題考查了平面向量數量積的性質及其運算,屬中檔題.15、1【解析】
根據為定義在上的偶函數,得,再根據當時,(為常數)求解.【詳解】因為為定義在上的偶函數,所以,又因為當時,,所以,所以實數的值為1.故答案為:1【點睛】本題主要考查函數奇偶性的應用,還考查了運算求解的能力,屬于基礎題.16、【解析】
利用復數模的計算公式求解即可.【詳解】解:由,得,所以.故答案為:.【點睛】本題考查復數模的求法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2),的最小值為.(3)時,面積取最小值為【解析】
(1),利用三角函數定義分別表示,且,即可得到關于的解析式;,,則,即可得到的范圍;(2)由(1),若求l的最小值即求的最大值,即可求的最大值,設為,令,則,即可設,利用導函數判斷函數的單調性,即可求得的最大值,進而求解;(3)由題,,則,設,,利用導函數求得的最大值,即可求得的最小值.【詳解】解:(1),故.因為,所以,,所以,又,,則,所以,所以(2)記,則,設,,則,記,則,令,則,當時,;當時,,所以在上單調遞增,在上單調遞減,故當時取最小值,此時,的最小值為.(3)的面積,所以,設,則,設,則,令,,所以當時,;當時,,所以在上單調遞增,在上單調遞減,故當,即時,面積取最小值為【點睛】本題考查三角函數定義的應用,考查利用導函數求最值,考查運算能力.18、(1)填表見解析;有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”(2)①詳見解析②期望;方差【解析】
(1)完成列聯表,代入數據即可判斷;(2)利用分層抽樣可得的取值,進而得到概率,列出分布列;根據分析知,計算出期望與方差.【詳解】(1)分數不少于120分分數不足120分合計線上學習時間不少于5小時15419線上學習時間不足5小時101626合計252045有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”.(2)①由分層抽樣知,需要從不足120分的學生中抽取人,的可能取值為0,1,2,3,4,,,,,所以,的分布列:②從全校不少于120分的學生中隨機抽取1人,此人每周上線時間不少于5小時的概率為,設從全校不少于120分的學生中隨機抽取20人,這些人中每周線上學習時間不少于5小時的人數為,則,故,.【點睛】本題考查了獨立性檢驗與離散型隨機變量的分布列、數學期望與方差的計算問題,屬于基礎題.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由可得到,代入,結合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;(Ⅱ)由,并結合正弦定理可得到,利用,,可得到,進而可求出周長的范圍.【詳解】解:(Ⅰ)由可知,∴.由正弦定理得.由余弦定理得,∴.(Ⅱ)由(Ⅰ)知,∴,.的周長為.∵,∴,∴,∴的周長的取值范圍為.【點睛】本題考查了正弦定理、余弦定理在解三角形中的運用,考查了三角形的面積公式,考查了學生分析問題、解決問題的能力,屬于基礎題.20、(1)0.98;可用線性回歸模型擬合.(2)【解析】
(1)根據題目提供的數據求出,代入相關系數公式求出,根據的大小來確定結果;(2)求出藥品
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 掌握動態知識2025年證券試題及答案
- 醫學教改課題申報書
- 九年級體育 遠撐前滾翻 韻律體操與舞蹈-基本步法 遠撐前滾翻教學設計
- 選擇2025年注冊會計師考試的試題及答案典型
- 課題申報書同事看到
- 醫學區級課題申報書
- 跨界應用2025年注冊會計師考試試題及答案
- 2025年中國電房環境監控裝置市場調查研究報告
- 2025年中國塑料五金產品市場調查研究報告
- 大學生活2025年證券從業資格證試題及答案
- 井蓋管理應急預案
- 鵪鶉蛋脫殼機的設計
- 項目管理進度表模板(全流程)
- 行為安全觀察behaviorbasedsafety研究復習過程
- 動火作業風險告知牌
- 鍋爐專業術語解釋及英文翻譯對照
- 《小石潭記》作業設計
- 體育測量與評價PPT課件-第五章身體素質的測量與評價
- 過程分層審核檢查表
- 氣井地面排采技術方案
- 旅行社等級評定申報材料完整版
評論
0/150
提交評論