



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023八年級數學下冊第一章三角形的證明1等腰三角形第3課時等腰三角形的判定及反證法教案(新版)北師大版主備人備課成員教材分析本節課為人教版八年級數學下冊第19章第1節“三角形的證明1等腰三角形”的第3課時,主要內容是等腰三角形的判定及反證法。學生在之前的學習中已經掌握了三角形的基本概念和性質,本節課將在此基礎上進一步學習等腰三角形的判定方法,并通過反證法證明等腰三角形的性質。
本節課的內容與學生的日常生活和后續學習都有較大的關聯,對于培養學生的邏輯思維能力和空間想象能力具有重要意義。在教學過程中,教師應注重引導學生通過觀察、思考、動手操作等方式主動探索等腰三角形的性質,并運用反證法進行證明。同時,教師還應關注學生的學習情況,及時進行反饋和指導,確保學生能夠掌握所學知識。核心素養目標本節課旨在培養學生的數學核心素養,主要包括邏輯推理、數學建模和幾何直觀三個方面。通過學習等腰三角形的判定及反證法,學生能夠提升自己的邏輯推理能力,運用反證法進行幾何證明,鍛煉自己的數學思維。同時,通過觀察和操作等腰三角形,學生能夠提高幾何直觀能力,更好地理解和應用幾何知識。此外,通過解決實際問題,學生能夠培養數學建模能力,將所學知識應用于解決實際生活中的問題。總之,本節課將幫助學生在邏輯推理、數學建模和幾何直觀等方面提升自己的數學核心素養。教學難點與重點1.教學重點
本節課的核心內容是等腰三角形的判定及反證法。具體重點包括:
(1)掌握等腰三角形的定義及其性質;
(2)學會使用反證法進行幾何證明;
(3)能夠運用判定方法識別等腰三角形。
2.教學難點
本節課的難點內容主要包括:
(1)反證法的理解和運用;
(2)等腰三角形性質的證明和應用;
(3)學生對幾何圖形的直觀理解和操作能力。
舉例解釋:
(1)反證法的理解和運用:反證法是一種常用的證明方法,要求從結論的反面出發,通過推理和邏輯推斷得出矛盾,從而證明結論的正確性。在等腰三角形的證明中,學生需要掌握反證法的步驟和技巧,例如假設結論不成立,然后通過邏輯推理得出矛盾,從而證明結論的正確性。
(2)等腰三角形性質的證明和應用:等腰三角形具有許多特殊的性質,例如等腰三角形的底角相等、等腰三角形的底邊中線垂直平分底邊等。學生需要理解和掌握這些性質的證明方法,并能夠運用這些性質解決實際問題。
(3)學生對幾何圖形的直觀理解和操作能力:幾何圖形是數學中的重要工具,學生需要具備較強的幾何圖形直觀理解和操作能力。在本節課中,學生需要通過觀察、操作等腰三角形,理解和掌握等腰三角形的性質和判定方法。學具準備多媒體課型新授課教法學法講授法課時第一課時師生互動設計二次備課教學資源1.軟硬件資源:
-教室內的黑板和投影儀;
-學生每人一臺計算器;
-幾何模型和等腰三角形模型;
-剪刀、膠水、彩色筆等手工制作材料。
2.課程平臺:
-學校提供的教學管理系統;
-數學課程相關的電子教材和教學PPT;
-在線數學問題討論平臺。
3.信息化資源:
-數學教學視頻和動畫;
-數學題目庫和練習系統;
-互聯網上的數學教育網站和論壇。
4.教學手段:
-講授法:教師講解等腰三角形的定義、性質和判定方法;
-實踐操作法:學生動手制作和觀察等腰三角形模型;
-問題驅動法:教師提出問題,引導學生思考和討論;
-小組合作法:學生分組討論和解決問題,促進合作交流。教學實施過程1.課前自主探索
教師活動:設計并發布預習任務,包括等腰三角形的定義、性質和判定方法的學習。
學生活動:學生獨立完成預習任務,通過查閱電子教材和互聯網資源,了解等腰三角形的基本知識。
教學方法:自主學習法
教學手段:電子教材、互聯網資源
作用和目的:培養學生自主學習的能力,為課堂學習打下基礎。
2.課中強化技能
環節一:導入新課
教師活動:通過回顧上節課的內容,引入等腰三角形的判定方法。
學生活動:學生跟隨教師回顧上節課的內容,積極參與討論。
教學方法:引導法
教學手段:黑板、投影儀
作用和目的:復習舊知識,為新課的學習做好鋪墊。
環節二:講解判定方法
教師活動:詳細講解等腰三角形的判定方法,舉例說明。
學生活動:學生認真聽講,記錄重要知識點。
教學方法:講授法
教學手段:PPT、幾何模型
作用和目的:讓學生掌握等腰三角形的判定方法。
環節三:實踐操作
教師活動:分發幾何模型和等腰三角形模型,引導學生進行實際操作。
學生活動:學生動手制作和觀察等腰三角形模型,觀察并分析其性質。
教學方法:實踐操作法
教學手段:幾何模型
作用和目的:增強學生對等腰三角形性質的理解和直觀感受。
環節四:反證法講解
教師活動:講解反證法的步驟和應用,舉例說明。
學生活動:學生跟隨教師學習反證法,嘗試理解并應用到等腰三角形的證明中。
教學方法:講授法
教學手段:PPT、幾何模型
作用和目的:培養學生運用反證法進行幾何證明的能力。
3.課后拓展應用
教師活動:布置課后作業,包括等腰三角形的判定和證明練習題。
學生活動:學生獨立完成作業,鞏固所學知識。
教學方法:自主學習法
教學手段:練習冊、互聯網資源
作用和目的:鞏固所學知識,提高學生的應用能力。拓展與延伸1.提供與本節課內容相關的拓展閱讀材料:
-《數學難題解析》:提供一些與等腰三角形相關的數學難題及其解析,幫助學生深入理解等腰三角形的性質和判定方法。
-《幾何探究》:介紹幾何學的發展歷史和幾何學家的探索故事,激發學生對幾何學的興趣和好奇心。
-《數學實驗與探究》:提供一些與幾何學相關的實驗和探究活動,讓學生通過實際操作和觀察,加深對幾何知識的理解。
2.鼓勵學生進行課后自主學習和探究:
-學生可以利用互聯網資源,查找等腰三角形的應用實例,了解等腰三角形在現實生活中的應用,提高數學知識的實用性。
-學生可以嘗試解決一些與等腰三角形相關的數學競賽題目,提高自己的解題能力和邏輯思維能力。
-學生可以組織小組討論,共同探討等腰三角形的性質和判定方法,通過合作交流提高自己的數學理解能力和團隊合作能力。
-學生可以進行幾何模型制作和觀察實驗,通過實際操作和觀察,加深對幾何知識的理解和直觀感受。重點題型整理七、重點題型整理
1.等腰三角形的判定題型
題目1:已知三角形ABC,AB=AC,證明三角形ABC是等腰三角形。
答案:根據等腰三角形的定義,如果一個三角形的兩邊相等,那么這個三角形是等腰三角形。因此,由AB=AC,可以得出三角形ABC是等腰三角形。
題目2:已知三角形ABC,BC=AC,證明三角形ABC是等腰三角形。
答案:同理,根據等腰三角形的定義,如果一個三角形的兩邊相等,那么這個三角形是等腰三角形。因此,由BC=AC,可以得出三角形ABC是等腰三角形。
2.等腰三角形的性質題型
題目3:已知三角形ABC是等腰三角形,證明∠B=∠C。
答案:在等腰三角形中,底角相等。因此,由三角形ABC是等腰三角形,可以得出∠B=∠C。
題目4:已知三角形ABC是等腰三角形,證明AB=AC。
答案:在等腰三角形中,底邊相等。因此,由三角形ABC是等腰三角形,可以得出AB=AC。
3.等腰三角形的應用題型
題目5:已知等腰三角形ABC,AB=AC,BC=6cm,求三角形ABC的高。
答案:在等腰三角形中,高也是底邊的垂直平分線。因此,三角形ABC的高將BC分成兩段相等的線段,每段為3cm。所以,三角形ABC的高為3cm。課堂小結,當堂檢測1.課堂小結
本節課我們學習了等腰三角形的判定和性質,以及反證法的應用。通過實例和練習,我們了解了等腰三角形的判定方法,掌握了等腰三角形的性質,并能夠運用反證法進行幾何證明。
2.當堂檢測
題目1:已知三角形ABC,AB=AC,證明三角形ABC是等腰三角形。
答案:三角形ABC是等腰三角形,因為AB=AC。
題目2:已知三角形ABC,BC=AC,證明三角形ABC是等腰三角形。
答案:三角形ABC是等腰三角形,因為BC=AC。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年標準農村土地經營權轉讓合同范本
- 交通運輸行業2025年節能減排技術創新與產業布局研究報告
- 數字化保險理賠服務在2025年老年人市場的應用與挑戰報告
- 2025年腫瘤診療精準醫療技術臨床應用效果與精準免疫治療報告
- 2025居間合同汽車銷售協議書范本
- 企業可持續發展目標(SDGs)在綠色采購中的實踐報告
- 2025年公司前臺實習報告總結模版
- 鄉村旅游與休閑農業2025融合發展報告:鄉村旅游與智慧旅游融合創新
- 綠色建筑認證體系在綠色建筑綠色建筑國際合作中的應用與發展報告
- 數字藝術展覽虛擬現實技術對觀眾參觀體驗的影響研究
- 農業文化創意產業園項目可行性研究報告
- GB/T 37507-2025項目、項目群和項目組合管理項目管理指南
- 浙江公路技師學院招聘考試真題2024
- 零碳園區的相關政策
- 中職生規范行為主題班會
- 注冊稅務師考前沖刺試卷帶答案2025
- 2025年財務管理的前沿動態試題及答案
- (一模)2025年廣州市普通高中畢業班綜合測試(一)物理試卷(含答案詳解)
- 腦卒中中西醫結合護理
- 陜西省2024年普通高中學業水平合格性考試語文試卷(含答案)
- 年產鄰苯二甲酸二丁酯畢業設計
評論
0/150
提交評論