




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.已知二次函數的與的部分對應值如表:下列結論:拋物線的開口向上;②拋物線的對稱軸為直線;③當時,;④拋物線與軸的兩個交點間的距離是;⑤若是拋物線上兩點,則,其中正確的個數是()A. B. C. D.2.若關于x的一元二次方程kx2-2kx+4=0有兩個相等的實數根,則kA.0或4 B.4或8 C.0 D.43.某單行道路的路口,只能直行或右轉,任意一輛車通過路口時直行或右轉的概率相同.有3輛車通過路口.恰好有2輛車直行的概率是()A. B. C. D.4.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點M是AB上的一點,點N是CB上的一點,,當∠CAN與△CMB中的一個角相等時,則BM的值為()A.3或4 B.或4 C.或6 D.4或65.下列計算①②③④⑤,其中任意抽取一個,運算結果正確的概率是()A. B. C. D.6.如圖,已知在△ABC中,P為AB上一點,連接CP,以下條件中不能判定△ACP∽△ABC的是()A. B. C. D.7.下面四個圖是同一天四個不同時刻樹的影子,其時間由早到晚的順序為()A.1234 B.4312 C.3421 D.42318.如圖,已知拋物線y1=x1-1x,直線y1=-1x+b相交于A,B兩點,其中點A的橫坐標為1.當x任取一值時,x對應的函數值分別為y1,y1,取m=(|y1-y1|+y1+y1).則()A.當x<-1時,m=y1 B.m隨x的增大而減小C.當m=1時,x=0 D.m≥-19.已知點A(﹣3,y1),B(﹣2,y2),C(3,y3)都在反比例函數y=(k<0)的圖象上,則()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y310.如圖所示,在中,,若,,則的值為()A. B. C. D.二、填空題(每小題3分,共24分)11.一元二次方程的解是_________.12.關于的方程有兩個不相等的實數根,那么的取值范圍是__________.13.廊橋是我國古老的文化遺產如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數表達式為,為保護廊橋的安全,在該拋物線上距水面AB高為8米的點E,F處要安裝兩盞警示燈,則這兩盞燈的水平距離EF是______米精確到1米14.點A(﹣3,m)和點B(n,2)關于原點對稱,則m+n=_____.15.如圖,有一張直徑為1.2米的圓桌,其高度為0.8米,同時有一盞燈距地面2米,圓桌在水平地面上的影子是,∥,和是光線,建立如圖所示的平面直角坐標系,其中點的坐標是.那么點的坐標是_________.16.若是方程的一個根,則的值是________.17.點在線段上,且.設,則__________.18.如圖,在四邊形ABCD中,∠BAD=∠BCD=90°,AB+AD=8cm.當BD取得最小值時,AC的最大值為_____cm.三、解答題(共66分)19.(10分)(1)解方程:.(2)已知:關于x的方程①求證:方程有兩個不相等的實數根;②若方程的一個根是,求另一個根及k值.20.(6分)如圖,是直徑AB所對的半圓弧,點P是與直徑AB所圍成圖形的外部的一個定點,AB=8cm,點C是上一動點,連接PC交AB于點D.小明根據學習函數的經驗,對線段AD,CD,PD,進行了研究,設A,D兩點間的距離為xcm,C,D兩點間的距離為cm,P,D兩點之間的距離為cm.小明根據學習函數的經驗,分別對函數,隨自變量x的變化而變化的規律進行了探究.下面是小明的探究過程,請補充完整:(2)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了,與x的幾組對應值:x/cm0.002.002.003.003.204.005.006.006.502.008.00/cm0.002.042.093.223.304.004.423.462.502.530.00/cm6.245.294.353.463.302.642.00m2.802.002.65補充表格;(說明:補全表格時,相關數值保留兩位小數)(2)在同一平面直角坐標系中,描出補全后的表中各組數值所對應的點,并畫出函數的圖象:(3)結合函數圖象解決問題:當AD=2PD時,AD的長度約為___________.21.(6分)先化簡,再求值.,請從一元二次方程x2+2x-3=0的兩個根中選擇一個你喜歡的求值.22.(8分)如圖是某學校體育看臺側面的示意圖,看臺的坡比為,看臺高度為米,從頂棚的處看處的仰角,距離為米,處到觀眾區底端處的水平距離為米.(,,結果精確到米)(1)求的長;(2)求的長.23.(8分)姐妹兩人在50米的跑道上進行短路比賽,兩人從出發點同時起跑,姐姐到達終點時,妹妹離終點還差3米,已知姐妹兩人的平均速度分別為a米/秒、b米/秒.(1)如果兩人重新開始比賽,姐姐從起點向后退3米,姐妹同時起跑,兩人能否同時到達終點?若能,請求出兩人到達終點的時間;若不能,請說明誰先到達終點.(2)如果兩人想同時到達終點,應如何安排兩人的起跑位置?請你設計兩種方案.24.(8分)小明大學畢業回家鄉創業,第一期培植盆景與花卉各50盆售后統計,盆景的平均每盆利潤是160元,花卉的平均每盆利潤是19元,調研發現:①盆景每增加1盆,盆景的平均每盆利潤減少2元;每減少1盆,盆景的平均每盆利潤增加2元;②花卉的平均每盆利潤始終不變.小明計劃第二期培植盆景與花卉共100盆,設培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤分別為W1,W2(單位:元)(1)用含x的代數式分別表示W1,W2;(2)當x取何值時,第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?25.(10分)某商場購進一種每件價格為90元的新商品,在商場試銷時發現:銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關系.(1)求出y與x之間的函數關系式;(2)寫出每天的利潤W與銷售單價x之間的函數關系式,并求出售價定為多少時,每天獲得的利潤最大?最大利潤是多少?26.(10分)某學校開展了主題為“垃圾分類,綠色生活新時尚”的宣傳活動,為了解學生對垃圾分類知識的掌握情況,該校環保社團成員在校園內隨機抽取了部分學生進行問卷調查將他們的得分按優秀、良好、合格、不合格四個等級進行統計,并繪制了如下不完整的統計表和條形統計圖.請根據圖表信息,解答下列問題:本次調查隨機抽取了____名學生:表中;補全條形統計圖:若全校有名學生,請你估計該校掌握垃圾分類知識達到“優秀"和“良好”等級的學生共有多少人
參考答案一、選擇題(每小題3分,共30分)1、B【分析】先利用交點式求出拋物線解析式,則可對①進行判斷;利用拋物線的對稱性可對②進行判斷;利用拋物線與x軸的交點坐標為(0,0),(4,0)可對③④進行判斷;根據二次函數的性質求出x的值,即可對⑤進行判斷.【詳解】設拋物線解析式為y=ax(x﹣4),把(﹣1,5)代入得5=a×(﹣1)×(﹣1﹣4),解得:a=1,∴拋物線解析式為y=x2﹣4x,所以①正確;拋物線的對稱軸為直線x==2,所以②正確;∵拋物線與x軸的交點坐標為(0,0),(4,0),開口向上,∴當0<x<4時,y<0,所以③錯誤;拋物線與x軸的兩個交點間的距離是4,所以④正確;若A(x1,2),B(x2,3)是拋物線上兩點,由x2﹣4x=2,解得:x1=,由x2﹣4x=3,解得:x2=,若取x1=,x2=,則⑤錯誤.故選:B.【點睛】本題考查了拋物線與x軸的交點:把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數的性質.2、D【解析】根據已知一元二次方程有兩個相等的實數根得出k≠0,Δ=(-2k)2-4×k×4=0【詳解】因為關于x的一元二次方程kx2-2kx+4=0有兩個相等的實數根,所以k≠0,Δ=(-2k)2【點睛】此題考查根的判別式,解題關鍵在于利用判別式解答.3、B【分析】用表示直行、表示右轉,畫出樹狀圖表示出所有的種等可能的結果,其中恰好有輛車直行占種,然后根據概率公式求解即可.【詳解】解:若用表示直行、表示右轉,則畫樹狀圖如下:∵共有種等可能的結果,其中恰好有輛車直行占種∴(恰好輛車直行).故選:B【點睛】此題考查的是用樹狀圖法求概率.注意樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合兩步或兩步以上完成的事件;注意概率等于所求情況數與總情況數之比.4、D【分析】分兩種情形:當時,,設,,可得,解出值即可;當時,過點作,可得,得出,,則,證明,得出方程求解即可.【詳解】解:在Rt△ABC中,∠ACB=90°,AC=1,BC=8,∴,AB=10,,設,,①當時,可得,,,,.②當時,如圖2中,過點作,可得,,,,,,,,,,,,.綜上所述,或1.故選:D.【點睛】本題考相似三角形的判定和性質,解題的關鍵是學會用分類討論的思想思考問題,學會添加常用輔助線,構造相似三角形解決問題.5、A【解析】根據計算結果和概率公式求解即可.【詳解】運算結果正確的有⑤,則運算結果正確的概率是,故選:A.【點睛】考核知識點:求概率.熟記公式是關鍵.6、C【分析】A、加一公共角,根據兩角對應相等的兩個三角形相似可以得結論;B、加一公共角,根據兩角對應相等的兩個三角形相似可以得結論;C、其夾角不相等,所以不能判定相似;D、其夾角是公共角,根據兩邊的比相等,且夾角相等,兩三角形相似.【詳解】A、∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,所以此選項的條件可以判定△ACP∽△ABC;B、∵∠A=∠A,∠APC=∠ACB,∴△ACP∽△ABC,所以此選項的條件可以判定△ACP∽△ABC;C、∵,當∠ACP=∠B時,△ACP∽△ABC,所以此選項的條件不能判定△ACP∽△ABC;D、∵,又∠A=∠A,∴△ACP∽△ABC,所以此選項的條件可以判定△ACP∽△ABC,本題選擇不能判定△ACP∽△ABC的條件,故選C.【點睛】本題考查了相似三角形的判定,熟練掌握相似三角形的判定方法是關鍵.7、B【解析】由于太陽早上從東方升起,則早上樹的影子向西;傍晚太陽在西邊落下,此時樹的影子向東,于是可判斷四個時刻的時間順序.【詳解】解:時間由早到晚的順序為1.
故選B.【點睛】本題考查了平行投影:由平行光線形成的投影是平行投影,如物體在太陽光的照射下形成的影子就是平行投影.8、D【分析】將點的橫坐標代入,求得,將,代入求得,然后將與聯立求得點的坐標,然后根據函數圖象化簡絕對值,最后根據函數的性質,可得函數的增減性以及的范圍.【詳解】將代入,得,點的坐標為.將,代入,得,.將與聯立,解得:,或,.點的坐標為.∴當x<-1時,,∴m=(|y1-y1|+y1+y1)=(y1-y1+y1+y1)=y1,故錯誤;當時,,.當時,.當時,,.∴當x<1時,m隨x的增大而減小,故錯誤;令,代入,求得:或(舍去),令,代入,求得:,∴當m=1時,x=0或,故錯誤.∵m=,畫出圖像如圖,∴.∴D正確.故選.【點睛】本題主要考查的是二次函數與一次函數的綜合,根據函數圖象比較出與的大小關系,從而得到關于x的函數關系式,是解題的關鍵.9、C【分析】先根據函數解析式中的比例系數k確定函數圖象所在的象限,再根據各象限內點的坐標特點及函數的增減性解答.【詳解】∵在反比例函數y=中,k<0,∴此函數圖象在二、四象限,∵﹣3<﹣1<0,∴點A(﹣3,y1),B(﹣1,y1)在第二象限,∴y1>0,y1>0,∵函數圖象在第二象限內為增函數,﹣3<﹣1<0,∴0<y1<y1.∵3>0,∴C(3,y3)點在第四象限,∴y3<0,∴y1,y1,y3的大小關系為y3<y1<y1.故選:C.【點睛】此題考查的是反比例函數圖象上點的坐標特點及平面直角坐標系中各象限內點的坐標特點,比較簡單.10、B【分析】由DE∥BC,可得△ADE∽△ABC,推出,即可得出結論.【詳解】∵AD=3,DB=4,∴AB=3+4=1.∵DE∥BC,∴△ADE∽△ABC,∴.故選:B.【點睛】本題考查了相似三角形的判定和性質,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.二、填空題(每小題3分,共24分)11、x1=0,x2=4【分析】用因式分解法求解即可.【詳解】∵,∴x(x-4)=0,∴x1=0,x2=4.故答案為x1=0,x2=4.【點睛】本題考查了一元二次方程的解法,常用的方法由直接開平方法、配方法、因式分解法、求根公式法,靈活選擇合適的方法是解答本題的關鍵.12、且【解析】分析:根據一元二次方程的定義以及根的判別式的意義可得△=4-12m>1且m≠1,求出m的取值范圍即可.詳解:∵一元二次方程mx2-2x+3=1有兩個不相等的實數根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<且m≠1,故答案為:m<且m≠1.點睛:本題考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c為常數)根的判別式△=b2-4ac.當△>1,方程有兩個不相等的實數根;當△=1,方程有兩個相等的實數根;當△<1,方程沒有實數根.也考查了一元二次方程的定義.13、【解析】由于兩盞E、F距離水面都是8m,因而兩盞景觀燈之間的水平距離就是直線y=8與拋物線兩交點的橫坐標差的絕對值.故有,即,,.所以兩盞警示燈之間的水平距離為:14、1【分析】根據兩個點關于原點對稱時,它們的坐標符號相反可得答案.【詳解】∵點A(-3,m)與點A′(n,2)關于原點中心對稱,∴n=3,m=-2,∴m+n=1,故答案為1.【點睛】此題主要考查了關于原點對稱的點的坐標,關鍵是掌握點的坐標的變化規律.15、【分析】先證明△ABC∽△ADE,再根據相似三角形的性質:相似三角形的對應高的比等于相似比求解即可.【詳解】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.2,∴DE=2,∴E(4,0).故答案為:(4,0).【點睛】本題考查了中心投影,相似三角形的判定和性質,準確識圖,熟練掌握相似三角形的對應高的比等于相似比是解題的關鍵.16、1【分析】將代入方程,得到,進而得到,,然后代入求值即可.【詳解】解:由題意,將代入方程∴,,∴故答案為:1【點睛】本題考查一元二次方程的解,及分式的化簡,掌握方程的解的概念和平方差公式是本題的解題關鍵.17、【分析】根據題意,將問題轉化為解一元二次方程的求解問題即可得出答案.【詳解】解:設BP=x,則AP=4-x,根據題意可得,,整理為:,利用求根公式解方程得:,∴,(舍去).故答案為:.【點睛】本題考查的知識點是由實際問題抽化出來的一元二次方程問題,將問題轉化為一元二次方程求解問題,熟記一元二次方程的求根公式是解此題的關鍵.18、【分析】設AB=x,則AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函數的性質可求出AB=AD=4時,BD的值最小,根據條件可知A,B,C,D四點在以BD為直徑的圓上.則AC為直徑時最長,則最大值為4.【詳解】解:設AB=x,則AD=8﹣x,∵∠BAD=∠BCD=90°,∴BD2=x2+(8﹣x)2=2(x﹣4)2+1.∴當x=4時,BD取得最小值為4.∵A,B,C,D四點在以BD為直徑的圓上.如圖,∴AC為直徑時取得最大值.AC的最大值為4.故答案為:4.【點睛】本題考查了四邊形的對角線問題,掌握勾股定理和圓內接四邊形的性質是解題的關鍵.三、解答題(共66分)19、(1)x1=1,x1=1;(1)①見解析;②另一個根為1,【分析】(1)把方程x1﹣3x+1=0進行因式分解,變為(x﹣1)(x﹣1)=0,再根據“兩式乘積為0,則至少一式的值為0”求出解;
(1)①由△=b1﹣4ac=k1+8>0,即可判定方程有兩個不相等的實數根;
②首先將x=﹣1代入原方程,求得k的值,然后解此方程即可求得另一個根.【詳解】(1)解:x1﹣3x+1=0,(x﹣1)(x﹣1)=0,x1=1,x1=1;(1)①證明:∵a=1,b=k,c=﹣1,∴△=b1﹣4ac=k1﹣4×1×(﹣1)=k1+8>0,∴方程有兩個不相等的實數根;②解:當x=﹣1時,(﹣1)1﹣k﹣1=0,解得:k=﹣1,則原方程為:x1﹣x﹣1=0,即(x﹣1)(x+1)=0,解得:x1=1,x1=﹣1,所以另一個根為1.【點睛】本題考查了一元二次方程ax1+bx+c=0(a,b,c是常數且a≠0)的根的判別式及根與系數的關系;根判別式△=b1?4ac:(1)當△>0時,一元二次方程有兩個不相等的實數根;(1)當△=0時,一元二次方程有兩個相等的實數根;(3)當△<0時,一元二次方程沒有實數根;若x1,x1為一元二次方程的兩根時,x1+x1=,x1?x1=.20、(2)m=2.23;(2)見解析;(3)4.3【分析】(2)根據表格中的數據可得:當x=5或2時,y2=2.00,然后畫出圖形如圖,可得當與時,,過點P作PM⊥AB于M,然后根據等腰三角形的性質和勾股定理求出PM的長即得m的值;(2)用光滑的曲線依次連接各點即可;(3)由題意AD=2PD可得x=2y2,只要在函數y2的圖象上尋找橫坐標是縱坐標的2倍的點即可,然后結合圖象解答即可.【詳解】解:(2)由表格可知:當x=5或2時,y2=2.00,如圖,即當時,,時,,∴,過點P作PM⊥AB于M,則,則在Rt△中,,即當x=6時,m=2.23;(2)如圖:(3)由題意得:AD=2PD,即x=2y2,即在函數y2的圖象上尋找橫坐標是縱坐標的2倍的點即可,如圖,點Q的位置即為所求,此時,x≈4.3,即AD≈4.3.故答案為:4.3.【點睛】本題主要考查了函數圖象的規律、等腰三角形的性質、勾股定理和圓的有關知識,正確理解題意、把握題中的規律、熟練運用數形結合的思想方法是解題關鍵.21、,【分析】根據分式的運算法則進行化簡,再把使分式有意義的方程的根代入即可求解.【詳解】解:====,∵x2+2x-3=0的兩根是-3,1,又∵x不能為1所以把x=﹣3代入,原式=.【點睛】本題考查分式的化簡求值、解一元二次方程,注意代入數值時,要選擇使分式有意義的數.22、(1)24;(2)25.6【分析】(1)根據坡比=垂直高度比水平距離代入求值即可.(2)先過D做EF的垂線,形成直角三角形,再根據銳角三角函數來求.【詳解】解:(1)的坡比為,(2)過點作交于點,在中,,,,【點睛】本題考查了坡比公式和銳角三角函數,銳角三角函數必須在直角三角形中求解.23、(1)姐姐用時秒,妹妹用時秒,所以不能同時到,姐姐先到;(2)姐姐后退米或妹妹前進3米【分析】(1)先求出姐姐和妹妹的速度關系,然后求出再次比賽時兩人用的時間,從而得出結論;(2)2種方案,姐姐退后或者妹妹向前,要想同時到達終點,則比賽用時相等,根據這個關系列寫等量關系式并求解.【詳解】(1)∵姐姐到達終點是,妹妹距終點還有3米∴姐姐跑50米和妹妹跑47米的時間相同,設這個時間為:即:∴a=50k,b=47k則再次比賽,姐姐的時間為:=秒妹妹的時間為:秒∵,∴<,即姐姐用時短,姐姐先到達終點(2)情況一:姐姐退后x米,兩人同時到達終點則:=,解得:x=情況二:妹妹向前y米,兩人同時到達終點則:=,解得:y=3綜上得:姐姐退后米或妹妹前進3米,兩人同時到達終點【點睛】本題考查行程問題,解題關鍵是引入輔助元k,用于表示姐姐和妹妹的速度關系.24、(1)W1=-2x2+60x+8000,W2=-19x+950;(2)當x=10時,W總最大為9160元.【解析】(1)第二期培植的盆景比第一期增加x盆,則第二期培植盆景(50+x)盆,花卉(50-x)盆,根據盆景每增加1盆,盆景的平均每盆利潤減少2元;每減少1盆,盆景的平均每盆利潤增加2元,②花卉的平均每盆利潤始終不變,即可得到利潤W1,W2與x的關系式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年小型路面保潔設備合作協議書
- 幼兒園開學期間兒童防疫措施
- 五年級下冊科學課程改革計劃
- 養老院安全管理機構及職責
- 文化藝術領域競聘流程及其意義
- 環保行業志愿者心得體會
- 留守學生藝術素養提升計劃
- 2025-2030廣東啤酒市場前景規劃及發展策略研究報告
- 2025-2030中國集裝箱房市場供需平衡趨勢與投資機遇建議研究報告
- 2025-2030中國車隊管理系統行業市場發展趨勢與前景展望戰略研究報告
- 《調相機運行規程》
- 施工現場一級動火作業審批表
- 污水管網巡查及養護投標方案(技術標)
- 腫瘤患者延續護理
- 《長方體和正方體的展開圖》-課件
- 數字圖像處理在航空航天中的應用
- 中水回用機房設備安裝
- (新版)制絲操作工(二級)理論考試復習題庫-上(單選題匯總)
- 手術室實踐指南術中輸血操作護理課件
- 食品投訴處理培訓課件
- 郵政快遞員工培訓課件
評論
0/150
提交評論