廣東省珠海市九洲中學2025屆九上數學期末考試模擬試題含解析_第1頁
廣東省珠海市九洲中學2025屆九上數學期末考試模擬試題含解析_第2頁
廣東省珠海市九洲中學2025屆九上數學期末考試模擬試題含解析_第3頁
廣東省珠海市九洲中學2025屆九上數學期末考試模擬試題含解析_第4頁
廣東省珠海市九洲中學2025屆九上數學期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省珠海市九洲中學2025屆九上數學期末考試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.在同一副撲克牌中抽取2張“方塊”,3張“梅花”,1張“紅桃”.將這6張牌背面朝上,從中任意抽取1張,是“紅桃”的概率為()A. B. C. D.2.下列事件中,是必然事件的是()A.擲一次骰子,向上一面的點數是6B.13個同學參加一個聚會,他們中至少有兩個同學的生日在同一個月C.射擊運動員射擊一次,命中靶心D.經過有交通信號燈的路口,遇到紅燈3.一個圓錐的側面積是底面積的4倍,則圓錐側面展開圖的扇形的圓心角是A.60° B.90° C.120° D.180°4.如圖,正六邊形內接于,正六邊形的周長是12,則的半徑是()A.3 B.2 C. D.5.如圖,四邊形ABCD為⊙O的內接四邊形,E是BC延長線上的一點,已知∠BOD=130°,則∠DCE的度數為()A.45° B.50° C.65° D.75°6.如圖,AB∥EF,CD⊥EF,∠BAC=50°,則∠ACD=()A.120° B.130° C.140° D.150°7.如圖,在矩形ABCD中,DE⊥AC垂足為F,交BC于點E,BE=2EC,連接AE.則tan∠CAE的值為()A. B. C. D.8.如圖,矩形ABCD中,E是AB的中點,將△BCE沿CE翻折,點B落在點F處,tan∠BCE=.設AB=x,△ABF的面積為y,則y與x的函數圖象大致為A. B.C. D.9.如圖,△ABC的頂點均在⊙O上,若∠A=36°,則∠OBC的度數為()A.18° B.36° C.60° D.54°10.如圖,四邊形ABCD為⊙O的內接四邊形,已知∠BCD=130°,則∠BOD=()A.B.C.D.11.《九章算術》中記載一問題如下:“今有共買雞,人出八,盈三;人出七,不足四,問人數、物價各幾何?”意思是:今有人合伙購物,每人出8錢,會多3錢;每人出7錢,又差4錢,問人數、物價各多少?設有人,買雞的錢數為,依題意可列方程組為()A. B.C. D.12.如圖,⊙O的半徑為2,點A的坐標為,直線AB為⊙O的切線,B為切點,則B點的坐標為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,在中,,,將繞頂點順時針旋轉,得到,點、分別與點、對應,邊分別交邊、于點、,如果點是邊的中點,那么______.14.使函數有意義的自變量的取值范圍是___________.15.如圖,點為等邊三角形的外心,連接.①___________.②弧以為圓心,為半徑,則圖中陰影部分的面積等于__________.16.拋物線y=x2+2x與y軸的交點坐標是_____.17.如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結論:①abc<0;②>0;③ac-b+1=0;④OA·OB=.其中正確結論的個數是______個.18.如圖,分別以等邊三角形的每個頂點為圓心、以邊長為半徑,在另兩個頂點間作一段弧,三段圓弧圍成的曲邊三角形稱為勒洛三角形,若這個等邊三角形的邊長為3,那么勒洛三角形(曲邊三角形)的周長為_____.三、解答題(共78分)19.(8分)如圖,已知的三個頂點的坐標分別為、、,P(a,b)是△ABC的邊AC上一點:(1)將繞原點逆時針旋轉90°得到,請在網格中畫出,旋轉過程中點A所走的路徑長為.(2)將△ABC沿一定的方向平移后,點P的對應點為P2(a+6,b+2),請在網格畫出上述平移后的△A2B2C2,并寫出點A2、的坐標:A2().(3)若以點O為位似中心,作△A3B3C3與△ABC成2:1的位似,則與點P對應的點P3位似坐標為(直接寫出結果).20.(8分)(1)問題發現:如圖1,在Rt△ABC中,AB=AC,D為BC邊上一點(不與點B、C重合)將線段AD繞點A逆時針旋轉90°得到AE,連接EC,則線段BD與CE的數量關系是,位置關系是;(2)探究證明:如圖2,在Rt△ABC與Rt△ADE中,AB=AC,AD=AE,將△ADE繞點A旋轉,使點D落在BC的延長線上時,連接EC,寫出此時線段AD,BD,CD之間的等量關系,并證明;(3)拓展延仲:如圖3,在四邊形ABCF中,∠ABC=∠ACB=∠AFC=45°.若BF=13,CF=5,請直接寫出AF的長.21.(8分)一汽車租賃公司擁有某種型號的汽車100輛.公司在經營中發現每輛車的月租金x(元)與每月租出的車輛數(y)有如下關系:x3000320035004000y100969080(1)觀察表格,用所學過的一次函數、反比例函數或二次函數的有關知識求出每月租出的車輛數y(輛)與每輛車的月租金x(元)之間的關系式.(2)已知租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.用含x(x≥3000)的代數式填表:租出的車輛數未租出的車輛數租出每輛車的月收益所有未租出的車輛每月的維護費(3)若你是該公司的經理,你會將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請求出公司的最大月收益是多少元.22.(10分)有這樣一個問題:探究函數y=的圖象與性質.小彤根據學習函數的經驗,對函數y=的圖象與性質進行了探究.下面是小彤探究的過程,請補充完整:(1)函數y=的自變量x的取值范圍是;(2)下表是y與x的幾組對應值:x…﹣2﹣101245678…y…m0﹣132…則m的值為;(3)如圖所示,在平面直角坐標系xOy中,描出了以上表中各對對應值為坐標的點,根據描出的點,畫出了圖象的一部分,請根據剩余的點補全此函數的圖象;(4)觀察圖象,寫出該函數的一條性質;(5)若函數y=的圖象上有三個點A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,則y1、y2、y3之間的大小關系為;23.(10分)在平面直角坐標系中,直線與反比例函數的圖象的兩個交點分別為點(,)和點.(1)求的值和點的坐標;(2)如果點為軸上的一點,且∠直接寫出點A的坐標.24.(10分)如圖,在中,,,圓是的外接圓.(1)求圓的半徑;(2)若在同一平面內的圓也經過、兩點,且,請直接寫出圓的半徑的長.25.(12分)某服裝店老板到廠家選購、兩種品牌的羽絨服,品牌羽絨服每件進價比品牌羽絨服每件進價多元,若用元購進種羽絨服的數量是用元購進種羽絨服數量的倍.(1)求、兩種品牌羽絨服每件進價分別為多少元?(2)若品牌羽絨服每件售價為元,品牌羽絨服每件售價為元,服裝店老板決定一次性購進、兩種品牌羽絨服共件,在這批羽絨服全部出售后所獲利潤不低于元,則最少購進品牌羽絨服多少件?26.如圖,已知反比例函數y=的圖象與一次函數y=x+b的圖象交于點A(1,4),點B(﹣4,n).(1)求n和b的值;(2)求△OAB的面積;(3)直接寫出一次函數值大于反比例函數值的自變量x的取值范圍.

參考答案一、選擇題(每題4分,共48分)1、A【分析】直接利用概率公式計算可得.【詳解】解:從中任意抽取1張,是“紅桃”的概率為,故選A.【點睛】本題主要考查概率公式,隨機事件A的概率P(A)=事件A可能出現的結果數÷所有可能出現的結果數.2、B【分析】事先能肯定它一定會發生的事件稱為必然事件,即發生的概率是1的事件.【詳解】解:A.擲一次骰子,向上一面的點數是6,屬于隨機事件;B.13個同學參加一個聚會,他們中至少有兩個同學的生日在同一個月,屬于必然事件;C.射擊運動員射擊一次,命中靶心,屬于隨機事件;D.經過有交通信號燈的路口,遇到紅燈,屬于隨機事件;故選B.【點睛】此題主要考查事件發生的概率,解題的關鍵是熟知必然事件的定義.3、B【解析】試題分析:設母線長為R,底面半徑為r,∴底面周長=2πr,底面面積=πr2,側面面積=πrR,∵側面積是底面積的4倍,∴4πr2=πrR.∴R=4r.∴底面周長=πR.∵圓錐的底面周長等于它的側面展開圖的弧長,∴設圓心角為n°,有,∴n=1.故選B.4、B【分析】根據題意畫出圖形,求出正六邊形的邊長,再求出∠AOB=60°即可求出的半徑.【詳解】解:如圖,連結OA,OB,∵ABCDEF為正六邊形,

∴∠AOB=360°×=60°,

∴△AOB是等邊三角形,∵正六邊形的周長是12,∴AB=12×=2,∴AO=BO=AB=2,故選B.【點睛】本題考查了正多邊形和圓,以及正六邊形的性質,根據題意畫出圖形,作出輔助線求出∠AOB=60°是解答此題的關鍵.5、C【分析】根據圓周角定理求出∠A,根據圓內接四邊形的性質得出∠DCE=∠A,代入求出即可.【詳解】∵∠BOD=130°,∴∠A=∠BOD=65°,∵四邊形ABCD為⊙O的內接四邊形,∴∠DCE=∠A=65°,故選:C.【點睛】本題考查了圓周角定理,圓內接四邊形的性質的應用,注意:圓內接四邊形的對角互補,并且一個外角等于它的內對角.6、C【解析】試題分析:如圖,延長AC交EF于點G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故選C.考點:垂線的定義;平行線的性質;三角形的外角性質7、C【分析】證明△AFD∽△CFE,得出,由△CFE∽△DFC,得出,設EF=x,則DE=3x,再由三角函數定義即可得出答案.【詳解】解:設EC=x,∵BE=2EC=2x,∴BC=BE+CE=3x,∵四邊形ABCD是矩形,

∴AD=BC=3x,AD∥EC,

∴△AFD∽△CFE,

∴,,設CF=n,設EF=m,

∴DF=3EF=3m,AF=3CF=3n,∵△ECD是直角三角形,,

∴△CFE∽△DFC,

∴,∴,即,

∴,∵,∴tan∠CAE=,

故選:C.【點睛】本題考查了相似三角形的判定和性質,矩形的性質,三角函數等知識;熟練掌握矩形的性質,證明三角形相似是解題的關鍵.8、D【解析】設AB=x,根據折疊,可證明∠AFB=90°,由tan∠BCE=,分別表示EB、BC、CE,進而證明△AFB∽△EBC,根據相似三角形面積之比等于相似比平方,表示△ABF的面積.【詳解】設AB=x,則AE=EB=x,由折疊,FE=EB=x,則∠AFB=90°,由tan∠BCE=,∴BC=x,EC=x,∵F、B關于EC對稱,∴∠FBA=∠BCE,∴△AFB∽△EBC,∴,∴y=,故選D.【點睛】本題考查了三角函數,相似三角形,三角形面積計算,二次函數圖像等知識,利用相似三角形的性質得出△ABF和△EBC的面積比是解題關鍵.9、D【解析】根據圓周角定理,由∠A=36°,可得∠O=2∠A=72°,然后根據OB=OC,求得∠OBC=12(180°-∠O)=1故選:D點睛:此題主要考查了圓周角定理,解題時,根據同弧所對的圓周角等于圓心角的一半,求出圓心角,再根據等腰三角形的性質和三角形的內角和定理求解即可,解題關鍵是發現同弧所對的圓心角和圓周角,明確關系進行計算.10、C【解析】根據圓內接四邊形的性質求出∠A的度數,再根據圓周角定理求解即可.【詳解】∵四邊形ABCD為⊙O的內接四邊形,∠BCD=130°,∴∠A+∠BCD=180°,∴∠A=50°,由圓周角定理得,2∠A=∠BOD=100°,故選C.【點睛】本題考查了圓內接四邊形的性質,圓周角定理,熟練掌握圓內接四邊形的對角互補是解題的關鍵.11、D【分析】一方面買雞的錢數=8人出的總錢數-3錢,另一方面買雞的錢數=7人出的總錢數+4錢,據此即可列出方程組.【詳解】解:設有人,買雞的錢數為,根據題意,得:.【點睛】本題考查的是二元一次方程組的應用,正確理解題意、根據買雞的總錢數不變列出方程組是解題關鍵.12、D【解析】過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D,∵⊙O的半徑為2,點A的坐標為,即OC=2.∴AC是圓的切線.∵OA=4,OC=2,∴∠AOC=60°.又∵直線AB為⊙O的切線,∴∠AOB=∠AOC=60°.∴∠BOD=180°-∠AOB-∠AOC=60°.又∵OB=2,∴OD=1,BD=,即B點的坐標為.故選D.二、填空題(每題4分,共24分)13、【分析】設AC=3x,AB=5x,可求BC=4x,由旋轉的性質可得CB1=BC=4x,A1B1=5x,∠ACB=∠A1CB1,由題意可證△CEB1∽△DEB,可得,即可表示出BD,DE,再得到A1D的長,故可求解.【詳解】∵∠ACB=90°,sinB=,∴設AC=3x,AB=5x,∴BC==4x,∵將△ABC繞頂點C順時針旋轉,得到△A1B1C,∴CB1=BC=4x,A1B1=5x,∠ACB=∠A1CB1,∵點E是A1B1的中點,∴CE=A1B1=2.5x=B1E=A1E,∴BE=BC?CE=1.5x,∵∠B=∠B1,∠CEB1=∠BED∴△CEB1∽△DEB∴∴BD=,DE=1.5x,∴A1D=A1E-DE=x,則x:=故答案為:.【點睛】本題考查了旋轉的性質,解直角三角形,相似三角形的判定和性質,證△CEB1∽△DEB是本題的關鍵.14、且【分析】根據二次根式的性質和分式的性質即可得.【詳解】由二次根式的性質和分式的性質得解得故答案為:且.【點睛】本題考查了二次根式的性質、分式的性質,二次根式的被開方數為非負數、分式的分母不能為零是常考知識點,需重點掌握.15、120【分析】①連接OC利用等邊三角形的性質可得出,可得出的度數②陰影部分的面積即求扇形AOC的面積,利用面積公式求解即可.【詳解】解:①連接OC,∵O為三角形的外心,∴OA=OB=OC∴∴∴.②∵∴∴陰影部分的面積即求扇形AOC的面積∵∴陰影部分的面積為:.【點睛】本題考查的知識點有等邊三角形外心的性質,全等三角形的判定及其性質以及扇形的面積公式,利用三角形外心的性質得出OA=OB=OC是解題的關鍵.16、(0,0)【解析】令x=0求出y的值,然后寫出即可.【詳解】令x=0,則y=0,所以,拋物線與y軸的交點坐標為(0,0).故答案為(0,0).【點睛】本題考查了二次函數圖象上點的坐標特征,熟練掌握拋物線與坐標軸的交點的求解方法是解題的關鍵.17、1【分析】由拋物線開口方向得a<0,由拋物線的對稱軸位置可得b>0,由拋物線與y軸的交點位置可得c>0,則可對①進行判斷;根據拋物線與x軸的交點個數得到b2?4ac>0,加上a<0,則可對②進行判斷;利用OA=OC可得到A(?c,0),再把A(?c,0)代入y=ax2+bx+c得ac2?bc+c=0,兩邊除以c則可對③進行判斷;設A(x1,0),B(x2,0),則OA=?x1,OB=x2,根據拋物線與x軸的交點問題得到x1和x2是方程ax2+bx+c=0(a≠0)的兩根,利用根與系數的關系得到x1?x2=,于是OA?OB=,則可對④進行判斷.【詳解】解:∵拋物線開口向下,∴a<0,∵拋物線的對稱軸在y軸的右側,∴b>0,∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以①正確;∵拋物線與x軸有2個交點,∴△=b2?4ac>0,而a<0,∴<0,所以②錯誤;∵C(0,c),OA=OC,∴A(?c,0),把A(?c,0)代入y=ax2+bx+c得ac2?bc+c=0,∴ac?b+1=0,所以③正確;設A(x1,0),B(x2,0),∵二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,∴x1和x2是方程ax2+bx+c=0(a≠0)的兩根,∴x1?x2=,∴OA?OB=,所以④正確.故答案為:1.

【點睛】本題考查了二次函數圖象與系數的關系:對于二次函數y=ax2+bx+c(a≠0),二次項系數a決定拋物線的開口方向和大小:當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右.(簡稱:左同右異);常數項c決定拋物線與y軸交點:拋物線與y軸交于(0,c);拋物線與x軸交點個數由△決定:△=b2?4ac>0時,拋物線與x軸有2個交點;△=b2?4ac=0時,拋物線與x軸有1個交點;△=b2?4ac<0時,拋物線與x軸沒有交點.18、3π.【分析】利用弧長公式計算.【詳解】曲邊三角形的周長=33π.故答案為:3π.【點睛】本題考查了弧長的計算:弧長公式:l(弧長為l,圓心角度數為n,圓的半徑為R).也考查了等邊三角形的性質.三、解答題(共78分)19、(1)畫圖見解析,π;(2)畫圖見解析,(4,4);(3)P3(2a,2b)或P3(-2a,-2b)【解析】(1)分別得出△ABC繞點O逆時針旋轉90o后的對應點得到的位置,進而得到旋轉后的得到,而點A所走的路徑長為以O為圓心,以OA長為半徑且圓心角為90°的扇形弧長;(2)由點P的對應點為P2(a+6,b+2)可知△ABC向右平移6個單位長度,再向上平移2個單位長度,即可得到的△A2B2C2;(3)以位似比2:1作圖即可,注意有兩個圖形,與點P對應的點P3的坐標是由P的橫、縱坐標都乘以2或-2得到的.【詳解】解:(1)如圖所示,∵∴點A所走的路徑長為:故答案為π(2)∵由點P的對應點為P2(a+6,b+2)∴△A2B2C2是△ABC向右平移6個單位長度,再向上平移2個單位長度可得到的,∴點A對應點A2坐標為(4,4)△A2B2C2如圖所示,(3)∵P(a,b)且以點O為位似中心,△A3B3C3與△ABC的位似比為2:1∴P3(2a,2b)或P3(-2a,-2b)△A3B3C3如圖所示,20、(1)BD=CE,BD⊥CE;(2)2AD2=BD2+CD2,理由詳見解析;(3).【分析】(1)證明△BAD≌△CAE,根據全等三角形的性質解答;(2)證明△BAD≌△CAE,得到BD=CE,根據勾股定理計算即可;(3)如圖3,作輔助線,構建全等三角形,證明△BAF≌△CAG,得到CG=BF=13,證明是直角三角形,根據勾股定理計算即可.【詳解】解:(1)在Rt△ABC中,AB=AC,∴∠B=∠ACB=90°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,∵,∴△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∵∠ACB=45°,∴,故答案為BD=CE,BD⊥CE;(2)2AD2=BD2+CD2,理由是:如圖2,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∵△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∵AD=AE,∠DAE=90°,∴,∴2AD2=BD2+CD2;(3)如圖3,將AF繞點A逆時針旋轉90°至AG,連接CG、FG,則△FAG是等腰直角三角形,∴∠AFG=45°,∵∠AFC=45°,∴∠GFC=90°,同理得:△BAF≌△CAG,∴CG=BF=13,Rt△CGF中,∵CF=5,∴FG=12,∵△FAG是等腰直角三角形,∴.【點睛】本題主要考查了全等三角形的判定與性質,勾股定理,以及旋轉變換的性質,掌握全等三角形的判定定理和性質定理是解題關鍵.21、(1)y與x間的函數關系是.(2)填表見解析;(3)當每輛車的月租金為4050元時,公司獲得最大月收益307050元【解析】(1)判斷出y與x的函數關系為一次函數關系,再根據待定系數法求出函數解析式.(2)根據題意可用代數式求出出租車的輛數和未出租車的輛數即可.(3)租出的車的利潤減去未租出車的維護費,即為公司最大月收益.【詳解】解:(1)由表格數據可知y與x是一次函數關系,設其解析式為,將(3000,100),(3200,96)代入得,解得:.∴.將(3500,90),(4000,80)代入檢驗,適合.∴y與x間的函數關系是.(2)填表如下:租出的車輛數未租出的車輛數租出每輛車的月收益所有未租出的車輛每月的維護費(3)設租賃公司獲得的月收益為W元,依題意可得:當x=4050時,Wmax=307050,∴當每輛車的月租金為4050元時,公司獲得最大月收益307050元22、(1)x≠3;(2);(3)詳見解析;(4)當x>3時y隨x的增大而減小等(答案不唯一);(5)<<【分析】(1)分式有意義,分母不等于零,(2)將x=-1代入即可,(3)圖像見詳解,(4)根據增減性即可得出結論,見詳解,(5)在圖像中找到滿足<3<<的三個點比較縱坐標即可得到結論.【詳解】解:(1)因為分式有意義,分母不等于零,所以x-3≠0,即x≠3;(2)將x=-1代入,解得m=;(3)如圖所示;(4)當x>3時y隨x的增大而減小(答案不唯一);(5)當x<3時,y<1,當x>3時,y>1且y隨x的增大而減小,所以<<【點睛】本題考查了反比例函數的簡單應用,中等難度,熟悉反比例函數圖像和性質是解題關鍵.23、(1)k=1,Q(-1,-1).(2)【分析】(1)將點P代入直線中即可求出m的值,再將P點代入反比例函數中即可得出k的值,通過直線與反比例函數聯立即可求出Q的坐標;(2)先求出PQ之間的距離,再利用直角三角形斜邊的中線等于斜邊的一半即可求出點A的坐標.【詳解】解:(1)∵點(,)在直線上,∴.∵點(,)在上,∴.∴∵點為直線與的交點,∴解得∴點坐標為(,).(2)由勾股定理得∵∠∴∴(,0),(,0).【點睛】本題主要考查反比例函數與一次函數的綜合,掌握待定系數法,勾股定理是解題的關鍵.24、(1);(2)或【分析】(1)過點作,垂足為,連接,根據垂直平分線的性質可得在上,根據垂徑定理即可求出BD,再根據勾股定理即可求出AD,設,根據勾股定理列出方程即可求出半徑;(2)根據垂直平分線的判定可得點P在BC的中垂線上,即點P在直線AD上,然后根據點A和點P的相對位置分類討論,然后根據勾股定理分別求出半徑即可.【詳解】(1)過點作,垂足為,連接∵,∴垂直平分∵∴點在的垂直平分線上,即在上.∵∴∵在中,,∴設,則∵在中,,∴,即解得,即圓的半徑為.(2)∵圓也經過、兩點,∴PA=PB∴點P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論