




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省無錫市周鐵區聯盟市級名校中考數學考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列四個命題,正確的有()個.①有理數與無理數之和是有理數②有理數與無理數之和是無理數③無理數與無理數之和是無理數④無理數與無理數之積是無理數.A.1 B.2 C.3 D.42.某工程隊開挖一條480米的隧道,開工后,每天比原計劃多挖20米,結果提前4天完成任務,若設原計劃每天挖米,那么求時所列方程正確的是()A. B.C. D.3.如圖,反比例函數y=-4x的圖象與直線y=-1A.8B.6C.4D.24.數據3、6、7、1、7、2、9的中位數和眾數分別是()A.1和7 B.1和9 C.6和7 D.6和95.下列運算正確的是()A.a3?a2=a6 B.a﹣2=﹣ C.3﹣2= D.(a+2)(a﹣2)=a2+46.如圖,已知矩形ABCD中,BC=2AB,點E在BC邊上,連接DE、AE,若EA平分∠BED,則的值為()A. B. C. D.7.施工隊要鋪設1000米的管道,因在中考期間需停工2天,每天要比原計劃多施工30米才能按時完成任務.設原計劃每天施工x米,所列方程正確的是()A.=2 B.=2C.=2 D.=28.計算﹣的結果為()A. B. C. D.9.有理數a,b在數軸上的對應點如圖所示,則下面式子中正確的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④10.下列汽車標志中,不是軸對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在□ABCD中,按以下步驟作圖:①以點B為圓心,以BA長為半徑作弧,交BC于點E;②分別以A,E為圓心,大于AE的長為半徑作弧,兩弧交于點F;③連接BF,延長線交AD于點G.若∠AGB=30°,則∠C=_______°.12.如圖,在4×4正方形網格中,黑色部分的圖形構成一個軸對稱圖形,現在任選取一個白色的小正方形并涂黑,使圖中黑色部分的圖形仍然構成一個軸對稱圖形的概率是_____.13.如圖,直線經過、兩點,則不等式的解集為_______.14.因式分解:9x﹣x2=_____.15.將代入函數中,所得函數值記為,又將代入函數中,所得的函數值記為,再將代入函數中,所得函數值記為…,繼續下去.________;________;________;________.16.如圖,在反比例函數y=(x>0)的圖象上,有點P1,P2,P3,P4,…,它們的橫坐標依次為2,4,6,8,…分別過這些點作x軸與y軸的垂線,圖中所構成的陰影部分的面積從左到右依次記為S1,S2,S3,…,Sn,則S1+S2+S3+…+Sn=_____(用含n的代數式表示)三、解答題(共8題,共72分)17.(8分)如圖所示,正方形網格中,△ABC為格點三角形(即三角形的頂點都在格點上).把△ABC沿BA方向平移后,點A移到點A1,在網格中畫出平移后得到的△A1B1C1;把△A1B1C1繞點A1按逆時針方向旋轉90°,在網格中畫出旋轉后的△A1B2C2;如果網格中小正方形的邊長為1,求點B經過(1)、(2)變換的路徑總長.18.(8分)如圖,四邊形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足為E,求證:AE=CE.19.(8分)二次函數y=ax2+bx+c(a,b,c為常數,且a≠1)中的x與y的部分對應值如表x
﹣1
1
1
3
y
﹣1
3
5
3
下列結論:①ac<1;②當x>1時,y的值隨x值的增大而減?。?是方程ax2+(b﹣1)x+c=1的一個根;④當﹣1<x<3時,ax2+(b﹣1)x+c>1.其中正確的結論是.20.(8分)如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB,于點E求證:△ACD≌△AED;若∠B=30°,CD=1,求BD的長.21.(8分)如圖,一次函數y=kx+b與反比例函數y=的圖象相較于A(2,3),B(﹣3,n)兩點.求一次函數與反比例函數的解析式;根據所給條件,請直接寫出不等式kx+b>的解集;過點B作BC⊥x軸,垂足為C,求S△ABC.22.(10分)已知頂點為A的拋物線y=a(x-)2-2經過點B(-,2),點C(,2).(1)求拋物線的表達式;(2)如圖1,直線AB與x軸相交于點M,與y軸相交于點E,拋物線與y軸相交于點F,在直線AB上有一點P,若∠OPM=∠MAF,求△POE的面積;(3)如圖2,點Q是折線A-B-C上一點,過點Q作QN∥y軸,過點E作EN∥x軸,直線QN與直線EN相交于點N,連接QE,將△QEN沿QE翻折得到△QEN′,若點N′落在x軸上,請直接寫出Q點的坐標.23.(12分)某校詩詞知識競賽培訓活動中,在相同條件下對甲、乙兩名學生進行了10次測驗,他們的10次成績如下(單位:分):整理、分析過程如下,請補充完整.(1)按如下分數段整理、描述這兩組數據:成績x學生70≤x≤7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100甲____________________________________乙114211(2)兩組數據的極差、平均數、中位數、眾數、方差如下表所示:學生極差平均數中位數眾數方差甲______83.7______8613.21乙2483.782______46.21(3)若從甲、乙兩人中選擇一人參加知識競賽,你會選______(填“甲”或“乙),理由為______.24.如圖,△ABC的頂點坐標分別為A(1,3)、B(4,1)、C(1,1).在圖中以點O為位似中心在原點的另一側畫出△ABC放大1倍后得到的△A1B1C1,并寫出A1的坐標;請在圖中畫出△ABC繞點O逆時針旋轉90°后得到的△A1B1C1.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】解:①有理數與無理數的和一定是有理數,故本小題錯誤;②有理數與無理數的和一定是無理數,故本小題正確;③例如=0,0是有理數,故本小題錯誤;④例如(﹣)×=﹣2,﹣2是有理數,故本小題錯誤.故選A.點睛:本題考查的是實數的運算及無理數、有理數的定義,熟知以上知識是解答此題的關鍵.2、C【解析】
本題的關鍵描述語是:“提前1天完成任務”;等量關系為:原計劃用時?實際用時=1.【詳解】解:原計劃用時為:,實際用時為:.所列方程為:,故選C.【點睛】本題考查列分式方程,分析題意,找到關鍵描述語,找到合適的等量關系是解決問題的關鍵.3、A【解析】試題解析:由于點A、B在反比例函數圖象上關于原點對稱,則△ABC的面積=2|k|=2×4=1.故選A.考點:反比例函數系數k的幾何意義.4、C【解析】
如果一組數據有奇數個,那么把這組數據從小到大排列后,排在中間位置的數是這組數據的中位數;如果一組數據有偶數個,那么把這組數據從小到大排列后,排在中間位置的兩個數的平均數是這組數據的中位數.一組數據中出現次數最多的數據叫做眾數.【詳解】解:∵7出現了2次,出現的次數最多,∴眾數是7;∵從小到大排列后是:1,2,3,6,7,7,9,排在中間的數是6,∴中位數是6故選C.【點睛】本題考查了中位數和眾數的求法,解答本題的關鍵是熟練掌握中位數和眾數的定義.5、C【解析】
直接利用同底數冪的乘除運算法則、負指數冪的性質、二次根式的加減運算法則、平方差公式分別計算即可得出答案.【詳解】A、a3?a2=a5,故A選項錯誤;B、a﹣2=,故B選項錯誤;C、3﹣2=,故C選項正確;D、(a+2)(a﹣2)=a2﹣4,故D選項錯誤,故選C.【點睛】本題考查了同底數冪的乘除運算以及負指數冪的性質以及二次根式的加減運算、平方差公式,正確掌握相關運算法則是解題關鍵.6、C【解析】
過點A作AF⊥DE于F,根據角平分線上的點到角的兩邊距離相等可得AF=AB,利用全等三角形的判定和性質以及矩形的性質解答即可.【詳解】解:如圖,過點A作AF⊥DE于F,在矩形ABCD中,AB=CD,∵AE平分∠BED,∴AF=AB,∵BC=2AB,∴BC=2AF,∴∠ADF=30°,在△AFD與△DCE中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD≌△DCE(AAS),∴△CDE的面積=△AFD的面積=∵矩形ABCD的面積=AB?BC=2AB2,∴2△ABE的面積=矩形ABCD的面積﹣2△CDE的面積=(2﹣)AB2,∴△ABE的面積=,∴,故選:C.【點睛】本題考查了矩形的性質,角平分線上的點到角的兩邊距離相等的性質,以及全等三角形的判定與性質,關鍵是根據角平分線上的點到角的兩邊距離相等可得AF=AB.7、A【解析】分析:設原計劃每天施工x米,則實際每天施工(x+30)米,根據:原計劃所用時間﹣實際所用時間=2,列出方程即可.詳解:設原計劃每天施工x米,則實際每天施工(x+30)米,根據題意,可列方程:=2,故選A.點睛:本題考查了由實際問題抽象出分式方程,關鍵是讀懂題意,找出合適的等量關系,列出方程.8、A【解析】
根據分式的運算法則即可【詳解】解:原式=,故選A.【點睛】本題主要考查分式的運算。9、B【解析】分析:本題是考察數軸上的點的大小的關系.解析:由圖知,b<0<a,故①正確,因為b點到原點的距離遠,所以|b|>|a|,故②錯誤,因為b<0<a,所以ab<0,故③錯誤,由①知a-b>a+b,所以④正確.故選B.10、C【解析】
根據軸對稱圖形的概念求解.【詳解】A、是軸對稱圖形,故錯誤;B、是軸對稱圖形,故錯誤;C、不是軸對稱圖形,故正確;D、是軸對稱圖形,故錯誤.故選C.【點睛】本題考查了軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、120【解析】
首先證明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四邊形的鄰角互補即可解決問題.【詳解】由題意得:∠GBA=∠GBE,∵AD∥BC,∴∠AGB=∠GBE=30°,∴∠ABC=60°,∵AB∥CD,∴∠C=180°-∠ABC=120°,故答案為:120.【點睛】本題考查基本作圖、平行四邊形的性質等知識,解題的關鍵是熟練掌握基本知識12、【解析】如圖,有5種不同取法;故概率為.13、-1<X<2【解析】經過點A,∴不等式x>kx+b>-2的解集為.14、x(9﹣x)【解析】試題解析:故答案為點睛:常見的因式分解的方法:提取公因式法,公式法,十字相乘法.15、22【解析】
根據數量關系分別求出y1,y2,y3,y4,…,不難發現,每3次計算為一個循環組依次循環,用2006除以3,根據商和余數的情況確定y2006的值即可.【詳解】y1=,
y2=?=2,
y3=?=,
y4=?=,
…,
∴每3次計算為一個循環組依次循環,
∵2006÷3=668余2,
∴y2006為第669循環組的第2次計算,與y2的值相同,
∴y2006=2,
故答案為;2;;2.【點睛】本題考查反比例函數的定義,解題的關鍵是多運算找規律.16、10﹣【解析】
過點P1、點Pn+1作y軸的垂線段,垂足分別是點A、B,過點P1作x軸的垂線段,垂足是點C,P1C交BPn+1于點D,所有的陰影部分平移到左邊,陰影部分的面積之和就等于矩形P1ABD的面積,即可得到答案.【詳解】如圖,過點P1、點Pn+1作y軸的垂線段,垂足分別是點A、B,過點P1作x軸的垂線段,垂足是點C,P1C交BPn于點D,則點Pn+1的坐標為(2n+2,),則OB=,∵點P1的橫坐標為2,∴點P1的縱坐標為5,∴AB=5﹣,∴S1+S2+S3+…+Sn=S矩形AP1DB=2(5﹣)=10﹣,故答案為10﹣.【點睛】本題考查了反比例函數系數k的幾何意義,反比例函數圖象上點的坐標特征,解題的關鍵是掌握過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|.三、解答題(共8題,共72分)17、(1)(2)作圖見解析;(3).【解析】
(1)利用平移的性質畫圖,即對應點都移動相同的距離.(2)利用旋轉的性質畫圖,對應點都旋轉相同的角度.(3)利用勾股定理和弧長公式求點B經過(1)、(2)變換的路徑總長.【詳解】解:(1)如答圖,連接AA1,然后從C點作AA1的平行線且A1C1=AC,同理找到點B1,分別連接三點,△A1B1C1即為所求.(2)如答圖,分別將A1B1,A1C1繞點A1按逆時針方向旋轉90°,得到B2,C2,連接B2C2,△A1B2C2即為所求.(3)∵,∴點B所走的路徑總長=.考點:1.網格問題;2.作圖(平移和旋轉變換);3.勾股定理;4.弧長的計算.18、證明見解析.【解析】
過點B作BF⊥CE于F,根據同角的余角相等求出∠BCF=∠D,再利用“角角邊”證明△BCF和△CDE全等,根據全等三角形對應邊相等可得BF=CE,再證明四邊形AEFB是矩形,根據矩形的對邊相等可得AE=BF,從而得證.【詳解】證明:如圖,過點B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°∴∠BCF=∠D,在△BCF和△CDE中,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四邊形AEFB是矩形,∴AE=BF,∴AE=CE.19、①③④.【解析】試題分析:∵x=﹣1時y=﹣1,x=1時,y=3,x=1時,y=5,∴,解得,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正確;對稱軸為直線,所以,當x>時,y的值隨x值的增大而減小,故②錯誤;方程為﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c=1的一個根,正確,故③正確;﹣1<x<3時,ax2+(b﹣1)x+c>1正確,故④正確;綜上所述,結論正確的是①③④.故答案為①③④.【考點】二次函數的性質.20、(1)見解析(2)BD=2【解析】解:(1)證明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根據角平分線性質求出CD=DE,根據HL定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根據含30度角的直角三角形性質求出即可.21、(1)反比例函數的解析式為:y=,一次函數的解析式為:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】
(1)根據點A位于反比例函數的圖象上,利用待定系數法求出反比例函數解析式,將點B坐標代入反比例函數解析式,求出n的值,進而求出一次函數解析式(2)根據點A和點B的坐標及圖象特點,即可求出反比例函數值大于一次函數值時x的取值范圍(3)由點A和點B的坐標求得三角形以BC為底的高是10,從而求得三角形ABC的面積【詳解】解:(1)∵點A(2,3)在y=的圖象上,∴m=6,∴反比例函數的解析式為:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)兩點在y=kx+b上,∴,解得:,∴一次函數的解析式為:y=x+1;(2)由圖象可知﹣3<x<0或x>2;(3)以BC為底,則BC邊上的高為3+2=1,∴S△ABC=×2×1=1.22、(1)y=(x-)2-2;(2)△POE的面積為或;(3)點Q的坐標為(-,)或(-,2)或(,2).【解析】
(1)將點B坐標代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,據此證△OPE∽△FAE得===,即OP=FA,設點P(t,-2t-1),列出關于t的方程解之可得;(3)分點Q在AB上運動、點Q在BC上運動且Q在y軸左側、點Q在BC上運動且點Q在y軸右側這三種情況分類討論即可得.【詳解】解:(1)把點B(-,2)代入y=a(x-)2-2,解得a=1,∴拋物線的表達式為y=(x-)2-2,(2)由y=(x-)2-2知A(,-2),設直線AB表達式為y=kx+b,代入點A,B的坐標得,解得,∴直線AB的表達式為y=-2x-1,易求E(0,-1),F(0,-),M(-,0),若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴OP=FA=,設點P(t,-2t-1),則,解得t1=-,t2=-,由對稱性知,當t1=-時,也滿足∠OPM=∠MAF,∴t1=-,t2=-都滿足條件,∵△POE的面積=OE·|t|,∴△POE的面積為或;(3)如圖,若點Q在AB上運動,過N′作直線RS∥y軸,交QR于點R,交NE的延長線于點S,設Q(a,-2a-1),則NE=-a,QN=-2a.由翻折知QN′=QN=-2a,N′E=NE=-a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2,ES=,由NE+ES=NS=QR可得-a+=2,解得a=-,∴Q(-,),如圖,若點Q在BC上運動,且Q在y軸左側,過N′作直線RS∥y軸,交BC于點R,交NE的延長線于點S.設NE=a,則N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(-,2),如圖,若點Q在BC上運動,且點Q在y軸右側,過N′作直線RS∥y軸,交BC于點R,交NE的延長線于點S.設NE=a,則N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(,2).綜上,點Q的坐標為(-,)或(-,2)或(,2).【點睛】本題主要考查二次函數的綜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學英語名詞單復數專項測試
- 法學入學面試題及答案
- 民航消防面試題及答案
- 2024年廣告設計師考試獨特視角試題及答案
- 出國勞務面試題目及答案
- 餐館收銀面試題目及答案
- 2024國際美術設計師考試整合知識點試題及答案
- 2024教育學試題及答案
- 2024年紡織品設計師證書考試與行業標準試題及答案
- 創意思維在廣告中的應用試題及答案
- 頂管機租憑合同協議
- 2025年湖南中考英命題分析及復習備考策略指導課件
- 四年級下冊英語競賽試題
- 低空空域經濟中高技能人才的培養路徑與市場分析
- 玻璃加工協議書模板
- 2025年北京市朝陽區九年級初三一模語文試卷(含答案)
- 井下電鉗工題庫(含答案)
- 吉林偉良礦業有限公司吉林省和龍市和安河金礦礦山地質環境保護與土地復墾方案
- 2025年陜西省高考適應性檢測(三)語文試題及參考答案
- 銅火法冶煉的智能化改造與應用
- 湖北省武漢市2025屆高中畢業生四月調研考試語文試卷及答案(武漢四調)
評論
0/150
提交評論