2023-2024學年山西省朔州市懷仁市重點達標名校中考試題猜想數學試卷含解析_第1頁
2023-2024學年山西省朔州市懷仁市重點達標名校中考試題猜想數學試卷含解析_第2頁
2023-2024學年山西省朔州市懷仁市重點達標名校中考試題猜想數學試卷含解析_第3頁
2023-2024學年山西省朔州市懷仁市重點達標名校中考試題猜想數學試卷含解析_第4頁
2023-2024學年山西省朔州市懷仁市重點達標名校中考試題猜想數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年山西省朔州市懷仁市重點達標名校中考試題猜想數學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.實數a,b,c在數軸上對應點的位置大致如圖所示,O為原點,則下列關系式正確的是()A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c2.小穎隨機抽樣調查本校20名女同學所穿運動鞋尺碼,并統計如表:尺碼/cm21.522.022.523.023.5人數24383學校附近的商店經理根據統計表決定本月多進尺碼為23.0cm的女式運動鞋,商店經理的這一決定應用的統計量是()A.平均數 B.加權平均數 C.眾數 D.中位數3.若關于x的一元二次方程x2﹣2x+m=0有兩個不相等的實數根,則m的取值范圍是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>14.如圖,是由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,則拿掉這個小立方體木塊之后的幾何體的俯視圖是()A. B. C. D.5.下列各式計算正確的是()A.a2+2a3=3a5 B.a?a2=a3 C.a6÷a2=a3 D.(a2)3=a56.一次函數滿足,且y隨x的增大而減小,則此函數的圖像一定不經過()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.下列計算正確的是()A. B.0.00002=2×105C. D.8.如圖,△ABC中,∠B=55°,∠C=30°,分別以點A和點C為圓心,大于AC的長為半徑畫弧,兩弧相交于點M,N作直線MN,交BC于點D,連結AD,則∠BAD的度數為()A.65° B.60°C.55° D.45°9.如圖,小明將一張長為20cm,寬為15cm的長方形紙(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,則剪去的直角三角形的斜邊長為()A.5cm B.12cm C.16cm D.20cm10.如圖,菱形ABCD的邊長為2,∠B=30°.動點P從點B出發,沿B-C-D的路線向點D運動.設△ABP的面積為y(B、P兩點重合時,△ABP的面積可以看作0),點P運動的路程為x,則y與x之間函數關系的圖像大致為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知雙曲線經過點(-1,2),那么k的值等于_______.12.拋物線的頂點坐標是________.13.如圖,把一個直角三角尺ACB繞著30°角的頂點B順時針旋轉,使得點A與CB的延長線上的點E重合連接CD,則∠BDC的度數為_____度.14.有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數,從中任意抽出一張卡片,卡片上的數是3的倍數的概率是15.分式方程的解是_____.16.因式分解:-3x2+3x=________.三、解答題(共8題,共72分)17.(8分)發現如圖1,在有一個“凹角∠A1A2A3”n邊形A1A2A3A4……An中(n為大于3的整數),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.驗證如圖2,在有一個“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+∠C+∠D.證明3,在有一個“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如圖4,在有兩個連續“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.18.(8分)綜合與探究:如圖,已知在△ABC中,AB=AC,∠BAC=90°,點A在x軸上,點B在y軸上,點在二次函數的圖像上.(1)求二次函數的表達式;(2)求點A,B的坐標;(3)把△ABC沿x軸正方向平移,當點B落在拋物線上時,求△ABC掃過區域的面積.19.(8分)為營造濃厚的創建全國文明城市氛圍,東營市某中學委托制衣廠制作“最美東營人”和“最美志愿者”兩款文化衫.若制作“最美東營人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美東營人”文化衫3件,“最美志愿者”5件,共需145元.(1)求“最美東營人”和“最美志愿者”兩款文化衫每件各多少元?(2)若該中學要購進“最美東營人”和“最美志愿者”兩款文化衫共90件,總費用少于1595元,并且“最美東營人”文化衫的數量少于“最美志愿者”文化衫的數量,那么該中學有哪幾種購買方案?20.(8分)先化簡,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.21.(8分)某企業信息部進行市場調研發現:信息一:如果單獨投資A種產品,所獲利潤yA(萬元)與投資金額x(萬元)之間存在某種關系的部分對應值如下表:x(萬元)122.535yA(萬元)0.40.811.22信息二:如果單獨投資B種產品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數關系:yB=ax2+bx,且投資2萬元時獲利潤2.4萬元,當投資4萬元時,可獲利潤3.2萬元.(1)求出yB與x的函數關系式;(2)從所學過的一次函數、二次函數、反比例函數中確定哪種函數能表示yA與x之間的關系,并求出yA與x的函數關系式;(3)如果企業同時對A、B兩種產品共投資15萬元,請設計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?22.(10分)6月14日是“世界獻血日”,某市采取自愿報名的方式組織市民義務獻血.獻血時要對獻血者的血型進行檢測,檢測結果有“A型”、“B型”、“AB型”、“O型”4種類型.在獻血者人群中,隨機抽取了部分獻血者的血型結果進行統計,并根據這個統計結果制作了兩幅不完整的圖表:血型ABABO人數105(1)這次隨機抽取的獻血者人數為人,m=;補全上表中的數據;若這次活動中該市有3000人義務獻血,請你根據抽樣結果回答:從獻血者人群中任抽取一人,其血型是A型的概率是多少?并估計這3000人中大約有多少人是A型血?23.(12分)如圖,在三個小桶中裝有數量相同的小球(每個小桶中至少有三個小球),第一次變化:從左邊小桶中拿出兩個小球放入中間小桶中;第二次變化:從右邊小桶中拿出一個小球放入中間小桶中;第三次變化:從中間小桶中拿出一些小球放入右邊小桶中,使右邊小桶中小球個數是最初的兩倍.(1)若每個小桶中原有3個小球,則第一次變化后,中間小桶中小球個數是左邊小桶中小球個數的____倍;(2)若每個小桶中原有a個小球,則第二次變化后中間小桶中有_____個小球(用a表示);(3)求第三次變化后中間小桶中有多少個小球?24.某銷售商準備在南充采購一批絲綢,經調查,用10000元采購A型絲綢的件數與用8000元采購B型絲綢的件數相等,一件A型絲綢進價比一件B型絲綢進價多100元.(1)求一件A型、B型絲綢的進價分別為多少元?(2)若銷售商購進A型、B型絲綢共50件,其中A型的件數不大于B型的件數,且不少于16件,設購進A型絲綢m件.①求m的取值范圍.②已知A型的售價是800元/件,銷售成本為2n元/件;B型的售價為600元/件,銷售成本為n元/件.如果50≤n≤150,求銷售這批絲綢的最大利潤w(元)與n(元)的函數關系式.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據數軸上點的位置確定出a,b,c的范圍,判斷即可.【詳解】由數軸上點的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故選A.【點睛】考查了實數與數軸,弄清數軸上點表示的數是解本題的關鍵.2、C【解析】

根據眾數是一組數據中出現次數最多的數,可能不止一個,對這個鞋店的經理來說,他最關注的是數據的眾數.【詳解】解:根據商店經理統計表決定本月多進尺碼為23.0cm的女式運動鞋,就說明穿23.0cm的女式運動鞋的最多,

則商店經理的這一決定應用的統計量是這組數據的眾數.

故選:C.【點睛】此題主要考查統計的有關知識,主要包括平均數、中位數、眾數、方差的意義.反映數據集中程度的平均數、中位數、眾數各有局限性,因此要對統計量進行合理的選擇和恰當的運用.3、B【解析】

根據方程有兩個不相等的實數根結合根的判別式即可得出△=4-4m>0,解之即可得出結論.【詳解】∵關于x的一元二次方程x2-2x+m=0有兩個不相等的實數根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故選B.【點睛】本題考查了根的判別式,熟練掌握“當△>0時,方程有兩個不相等的兩個實數根”是解題的關鍵.4、B【解析】

俯視圖是從上面看幾何體得到的圖形,據此進行判斷即可.【詳解】由7個相同的小立方體木塊堆成的一個幾何體,拿掉1個小立方體木塊之后,這個幾何體的主(正)視圖沒變,得拿掉第一排的小正方形,拿掉這個小立方體木塊之后的幾何體的俯視圖是,故選B.【點睛】本題主要考查了簡單幾何體的三視圖,解題時注意:俯視圖就是從幾何體上面看到的圖形.5、B【解析】

根據冪的乘方,底數不變指數相乘;同底數冪相除,底數不變,指數相減;同底數冪相乘,底數不變指數相加,對各選項分析判斷利用排除法求解【詳解】A.a2與2a3不是同類項,故A不正確;B.a?a2=a3,正確;C.原式=a4,故C不正確;D.原式=a6,故D不正確;故選:B.【點睛】此題考查同底數冪的乘法,冪的乘方與積的乘方,解題的關鍵在于掌握運算法則.6、C【解析】

y隨x的增大而減小,可得一次函數y=kx+b單調遞減,k<0,又滿足kb<0,可得b>0,由此即可得出答案.【詳解】∵y隨x的增大而減小,∴一次函數y=kx+b單調遞減,∴k<0,∵kb<0,∴b>0,∴直線經過第二、一、四象限,不經過第三象限,故選C.【點睛】本題考查了一次函數的圖象和性質,熟練掌握一次函數y=kx+b(k≠0,k、b是常數)的圖象和性質是解題的關鍵.7、D【解析】

在完成此類化簡題時,應先將分子、分母中能夠分解因式的部分進行分解因式.有些需要先提取公因式,而有些則需要運用公式法進行分解因式.通過分解因式,把分子分母中能夠分解因式的部分,分解成乘積的形式,然后找到其中的公因式約去.【詳解】解:A、原式=;故本選項錯誤;B、原式=2×10-5;故本選項錯誤;C、原式=;故本選項錯誤;D、原式=;故本選項正確;故選:D.【點睛】分式的乘除混合運算一般是統一為乘法運算,如果有乘方,還應根據分式乘方法則先乘方,即把分子、分母分別乘方,然后再進行乘除運算.同樣要注意的地方有:一是要確定好結果的符號;二是運算順序不能顛倒.8、A【解析】

根據線段垂直平分線的性質得到AD=DC,根據等腰三角形的性質得到∠C=∠DAC,求得∠DAC=30°,根據三角形的內角和得到∠BAC=95°,即可得到結論.【詳解】由題意可得:MN是AC的垂直平分線,則AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故選A.【點睛】此題主要考查了線段垂直平分線的性質,三角形的內角和,正確掌握線段垂直平分線的性質是解題關鍵.9、D【解析】

解答此題要延長AB、DC相交于F,則BFC構成直角三角形,再用勾股定理進行計算.【詳解】延長AB、DC相交于F,則BFC構成直角三角形,運用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.則剪去的直角三角形的斜邊長為1cm.故選D.【點睛】本題主要考查了勾股定理的應用,解答此題要延長AB、DC相交于F,構造直角三角形,用勾股定理進行計算.10、C【解析】

先分別求出點P從點B出發,沿B→C→D向終點D勻速運動時,當0<x≤2和2<x≤4時,y與x之間的函數關系式,即可得出函數的圖象.【詳解】由題意知,點P從點B出發,沿B→C→D向終點D勻速運動,則

當0<x≤2,y=x,

當2<x≤4,y=1,

由以上分析可知,這個分段函數的圖象是C.

故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、-1【解析】

分析:根據點在曲線上點的坐標滿足方程的關系,將點(-1,2)代入,得:,解得:k=-1.12、(0,-1)【解析】∵a=2,b=0,c=-1,∴-=0,,∴拋物線的頂點坐標是(0,-1),故答案為(0,-1).13、1【解析】

根據△EBD由△ABC旋轉而成,得到△ABC≌△EBD,則BC=BD,∠EBD=∠ABC=30°,則有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化簡計算即可得出.【詳解】解:∵△EBD由△ABC旋轉而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,∴;故答案為:1.【點睛】此題考查旋轉的性質,即圖形旋轉后與原圖形全等.14、.【解析】

分別求出從1到6的數中3的倍數的個數,再根據概率公式解答即可.【詳解】有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數,從中任意抽出一張卡片,共有6種結果,其中卡片上的數是3的倍數的有3和6兩種情況,所以從中任意抽出一張卡片,卡片上的數是3的倍數的概率是.故答案為【點睛】考查了概率公式,用到的知識點為:概率=所求情況數與總情況數之比.15、x=13【解析】

解分式方程的步驟:①去分母;②求出整式方程的解;③檢驗;④得出結論.【詳解】,去分母,可得x﹣5=8,解得x=13,經檢驗:x=13是原方程的解.【點睛】本題主要考查了解分式方程,解分式方程時,去分母后所得整式方程的解有可能使原方程中的分母為0,所以應檢驗.16、-3x(x-1)【解析】

原式提取公因式即可得到結果.【詳解】解:原式=-3x(x-1),故答案為-3x(x-1)【點睛】此題考查了因式分解-提公因式法,熟練掌握提取公因式的方法是解本題的關鍵.三、解答題(共8題,共72分)17、(1)見解析;(2)見解析;(3)1.【解析】

(1)如圖2,延長AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如圖3,延長AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出規律即可解答【詳解】(1)如圖2,延長AB交CD于E,則∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如圖3,延長AB交CD于G,則∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,則∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.故答案為1.【點睛】此題考查多邊形的內角和外角,,解題的關鍵是熟練掌握三角形的外角的性質,屬于中考??碱}型18、(1);(2);(3).【解析】

(1)將點代入二次函數解析式即可;(2)過點作軸,證明即可得到即可得出點A,B的坐標;(3)設點的坐標為,解方程得出四邊形為平行四邊形,求出AC,AB的值,通過掃過區域的面積=代入計算即可.【詳解】解:(1)∵點在二次函數的圖象上,.解方程,得∴二次函數的表達式為.(2)如圖1,過點作軸,垂足為..,.在和中,∵,.∵點的坐標為,..(3)如圖2,把沿軸正方向平移,當點落在拋物線上點處時,設點的坐標為.解方程得:(舍去)或由平移的性質知,且,∴四邊形為平行四邊形,.掃過區域的面積==.【點睛】本題考查了二次函數與幾何綜合問題,涉及全等三角形的判定與性質,平行四邊形的性質與判定,勾股定理解直角三角形,解題的關鍵是靈活運用二次函數的性質與幾何的性質.19、(1)“最美東營人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)有三種方案,具體見解析.【解析】

(1)設“最美東營人”文化衫每件x元,“最美志愿者”文化衫每件y元,根據若制作“最美東營人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美東營人”文化衫3件,“最美志愿者”5件,共需11元建立方程組求出其解即可;(2)設購買“最美東營人”文化衫m件,根據總費用少于1595元,并且“最美東營人”文化衫的數量少于“最美志愿者”文化衫的數量,列出不等式組,然后求m的正整數解.【詳解】(1)設“最美東營人”文化衫每件x元,“最美志愿者”文化衫每件y元,由題意,得,解得:.答:“最美東營人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)設購買“最美東營人”文化衫m件,則購買“最美志愿者”文化衫(90-m)件,由題意,得,解得:41<m<1.∵m是整數,∴m=42,43,2.則90-m=48,47,3.答:方案一:購買“最美東營人”文化衫42件,“最美志愿者”文化衫48件;方案二:購買“最美東營人”文化衫43件,“最美志愿者”文化衫47件;方案三:購買“最美東營人”文化衫2件,“最美志愿者”文化衫3件.【點睛】本題考查了二元一次方程組的運用,一元一次不等式組的運用,解決問題的關鍵是讀懂題意,找到關鍵描述語,進而找到所求的量的數量關系.20、2x2﹣7xy,1【解析】

根據完全平方公式及多項式的乘法法則展開,然后合并同類項進行化簡,然后把x、y的值代入求值即可.【詳解】原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,當x=5,y=時,原式=50﹣7=1.【點睛】完全平方公式和多項式的乘法法則是本題的考點,能夠正確化簡多項式是解題的關鍵.21、(1)yB=-0.2x2+1.6x(2)一次函數,yA=0.4x(3)該企業投資A產品12萬元,投資B產品3萬元,可獲得最大利潤7.8萬元【解析】

(1)用待定系數法將坐標(2,2.4)(4,3.2)代入函數關系式yB=ax2+bx求解即可;(2)根據表格中對應的關系可以確定為一次函數,通過待定系數法求得函數表達式;(3)根據等量關系“總利潤=投資A產品所獲利潤+投資B產品所獲利潤”列出函數關系式求得最大值【詳解】解:(1)yB=-0.2x2+1.6x,(2)一次函數,yA=0.4x,(3)設投資B產品x萬元,投資A產品(15-x)萬元,投資兩種產品共獲利W萬元,則W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,∴當x=3時,W最大值=7.8,答:該企業投資A產品12萬元,投資B產品3萬元,可獲得最大利潤7.8萬元.22、(1)50,20;(2)12,23;見圖;(3)大約有720人是A型血.【解析】【分析】(1)用AB型的人數除以它所占的百分比得到隨機抽取的獻血者的總人數,然后用B型的人數除以抽取的總人數即可求得m的值;(2)先計算出O型的人數,再計算出A型人數,從而可補全上表中的數據;(3)用樣本中A型的人數除以50得到血型是A型的概率,然后用3000乘以此概率可估計這3000人中是A型血的人數.【詳解】(1)這次隨機抽取的獻血者人數為5÷10%=50(人),所以m=×100=20,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論