




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆黑龍江省大慶市肇州實驗中學九上數學期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在中,點,分別在,邊上,,,若,,則線段的長為()A. B. C. D.52.二次函數y=ax2+bx+c的部分對應值如表:利用該二次函數的圖象判斷,當函數值y>0時,x的取值范圍是()A.0<x<8 B.x<0或x>8 C.﹣2<x<4 D.x<﹣2或x>43.己知⊙的半徑是一元二次方程的一個根,圓心到直線的距離.則直線與⊙的位置關系是A.相離 B.相切 C.相交 D.無法判斷4.一元二次方程的解是()A. B. C. D.5.如圖所示,某同學拿著一把有刻度的尺子,站在距電線桿30m的位置,把手臂向前伸直,將尺子豎直,看到尺子遮住電線桿時尺子的刻度為12cm,已知臂長60cm,則電線桿的高度為(
)A.2.4m B.24m C.0.6m D.6m6.趙州橋的橋拱可以用拋物線的一部分表示,函數關系為,當水面寬度AB為20m時,水面與橋拱頂的高度DO等于()A.2m B.4m C.10m D.16m7.平移拋物線y=﹣(x﹣1)(x+3),下列哪種平移方法不能使平移后的拋物線經過原點()A.向左平移1個單位 B.向上平移3個單位C.向右平移3個單位 D.向下平移3個單位8.若一元二次方程x2﹣2x+m=0有兩個不相同的實數根,則實數m的取值范圍是()A.m≥1 B.m≤1 C.m>1 D.m<19.如圖,、是的兩條弦,若,則的度數為()A. B. C. D.10.如圖所示的幾何體的左視圖是()A. B.C. D.11.不透明袋子中有除顏色外完全相同的4個黑球和2個白球,從袋子中隨機摸出3個球,下列事件是必然事件的是().A.3個都是黑球 B.2個黑球1個白球C.2個白球1個黑球 D.至少有1個黑球12.如圖,如果從半徑為9cm的圓形紙片剪去圓周的一個扇形,將留下的扇形圍成一個圓錐(接縫處不重疊),那么這個圓錐的高為A.6cm B.cm C.8cm D.cm二、填空題(每題4分,共24分)13.如圖,順次連接腰長為2的等腰直角三角形各邊中點得到第1個小三角形,再順次連接所得的小三角形各邊中點得到第2個小三角形,如此操作下去,則第7個小三角形的面積為_________________14.拋物線y=(x+2)2-2的頂點坐標是________.15.隨即擲一枚均勻的硬幣三次次,三次正面朝上的概率是______________.16.如圖,身高為1.7m的小明AB站在小河的一岸,利用樹的倒影去測量河對岸一棵樹CD的高度,CD在水中的倒影為C′D,A、E、C′在一條線上.如果小河BD的寬度為12m,BE=3m,那么這棵樹CD的高為_____m.17.一組數據:2,5,3,1,6,則這組數據的中位數是________.18.如圖,,,與交于點,則是相似三角形共有__________對.三、解答題(共78分)19.(8分)如圖,方格紙中的每個小方格都是邊長為個單位的正方形,在建立平面直角坐標系后,的頂點均在格點上,點的坐標為.以點為位似中心,在軸的左側將放大得到,使得的面積是面積的倍,在網格中畫出圖形,并直接寫出點所對應的點的坐標.在網格中,畫出繞原點順時針旋轉的.20.(8分)如圖,在平面直角坐標系中,過點M(0,2)的直線l與x軸平行,且直線l分別與反比例函數y=(x>0)和y=(x<0)的圖象分別交于點P,Q.(1)求P點的坐標;(2)若△POQ的面積為9,求k的值.21.(8分)為推進“傳統文化進校園”活動,我市某中學舉行了“走進經典”征文比賽,賽后整理參賽學生的成績,將學生的成績分為四個等級,并將結果繪制成不完整的條形統計圖和扇形統計圖.請根據統計圖解答下列問題:(1)參加征文比賽的學生共有人;(2)補全條形統計圖;(3)在扇形統計圖中,表示等級的扇形的圓心角為__圖中;(4)學校決定從本次比賽獲得等級的學生中選出兩名去參加市征文比賽,已知等級中有男生一名,女生兩名,請用列表或畫樹狀圖的方法求出所選兩名學生恰好是一名男生和一名女生的概率.22.(10分)在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=xm.(1)若花園的面積為192m2,求x的值;(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(含邊界,不考慮樹的粗細),求花園面積S的最大值.23.(10分)如圖1,拋物線y=﹣x2+mx+n交x軸于點A(﹣2,0)和點B,交y軸于點C(0,2).(1)求拋物線的函數表達式;(2)若點M在拋物線上,且S△AOM=2S△BOC,求點M的坐標;(3)如圖2,設點N是線段AC上的一動點,作DN⊥x軸,交拋物線于點D,求線段DN長度的最大值.24.(10分)如圖,二次函數y=ax2+bx+c過點A(﹣1,0),B(3,0)和點C(4,5).(1)求該二次函數的表達式及最小值.(2)點P(m,n)是該二次函數圖象上一點.①當m=﹣4時,求n的值;②已知點P到y軸的距離不大于4,請根據圖象直接寫出n的取值范圍.25.(12分)如圖所示,一輛單車放在水平的地面上,車把頭下方處與坐墊下方處在平行于地面的同一水平線上,,之間的距離約為,現測得,與的夾角分別為與,若點到地面的距離為,坐墊中軸處與點的距離為,求點到地面的距離(結果保留一位小數).(參考數據:,,)26.已知關于x的方程.求證:不論m為何值,方程總有實數根;當m為何整數時,方程有兩個不相等的正整數根?
參考答案一、選擇題(每題4分,共48分)1、C【解析】設,,所以,易證,利用相似三角形的性質可求出的長度,以及,再證明,利用相似三角形的性質即可求出得出,從而可求出的長度.【詳解】解:設,,∴,∵,∴,∴,∴,∴,,∵,,∴,∵,∴,∴,設,,∴,∴,∴,∴,故選C.【點睛】本題考查相似三角形,解題的關鍵是熟練運用相似三角形的性質與判定,本題屬于中等題型.2、C【分析】觀察表格得出拋物線頂點坐標是(1,9),對稱軸為直線x=1,而當x=-2時,y=0,則拋物線與x軸的另一交點為(1,0),由表格即可得出結論.【詳解】由表中的數據知,拋物線頂點坐標是(1,9),對稱軸為直線x=1.當x<1時,y的值隨x的增大而增大,當x>1時,y的值隨x的增大而減小,則該拋物線開口方向向上,所以根據拋物線的對稱性質知,點(﹣2,0)關于直線直線x=1對稱的點的坐標是(1,0).所以,當函數值y>0時,x的取值范圍是﹣2<x<1.故選:C.【點睛】本題考查了二次函數與x軸的交點、二次函數的性質等知識,解答本題的關鍵是要認真觀察,利用表格中的信息解決問題.3、A【分析】在判斷直線與圓的位置關系時,通常要得到圓心到直線的距離,然后再利用d與r的大小關系進行判斷;在直線與圓的問題中,充分利用構造的直角三角形來解決問題,直線與圓的位置關系:①當d>r時,直線與圓相離;②當d=r時,直線與圓相切;③當d<r時,直線與圓相交.【詳解】∵的解為x=4或x=-1,∴r=4,∵4<6,即r<d,∴直線和⊙O的位置關系是相離.故選A.【點睛】本題主要考查了直線與圓的位置關系,一元二次方程的定義及一般形式,掌握直線與圓的位置關系,一元二次方程的定義及一般形式是解題的關鍵.4、D【分析】這個式子先移項,變成x2=4,從而把問題轉化為求4的平方根.【詳解】移項得,x2=4開方得,x=±2,故選D.【點睛】(1)用直接開方法求一元二次方程的解的類型有:x2=a(a≥0);ax2=b(a,b同號且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同號且a≠0).法則:要把方程化為“左平方,右常數,先把系數化為1,再開平方取正負,分開求得方程解”.(2)用直接開方法求一元二次方程的解,要仔細觀察方程的特點.5、D【解析】試題解析:作AN⊥EF于N,交BC于M,
∵BC∥EF,
∴AM⊥BC于M,
∴△ABC∽△AEF,
∴,
∵AM=0.6,AN=30,BC=0.12,
∴EF==6m.
故選D.6、B【分析】根據題意,水面寬度AB為20則B點的橫坐標為10,利用B點是函數為圖象上的點即可求解y的值即DO【詳解】根據題意B的橫坐標為10,把x=10代入,得y=﹣4,∴A(﹣10,﹣4),B(10,﹣4),即水面與橋拱頂的高度DO等于4m.故選B.【點睛】本題考查了點的坐標及二次函數的實際應用.7、B【分析】先將拋物線解析式轉化為頂點式,然后根據頂點坐標的平移規律即可解答.【詳解】解:y=﹣(x﹣1)(x+3)=-(x+1)2+4A、向左平移1個單位后的解析式為:y=-(x+2)2+4,當x=0時,y=0,即該拋物線經過原點,故本選項不符合題意;B、向上平移3個單位后的解析式為:y=-(x+1)2+7,當x=0時,y=3,即該拋物線不經過原點,故本選項符合題意;C、向右平移3個單位后的解析式為:y=-(x-2)2+4,當x=0時,y=0,即該拋物線經過原點,故本選項不符合題意.;D、向下平移3個單位后的解析式為:y=-(x+1)2+1,當x=0時,y=0,即該拋物線經過原點,故本選項不符合題意.【點睛】本題考查了二次函數圖像的平移,函數圖像平移規律:上移加,下移減,左移加,右移減.8、D【解析】分析:根據方程的系數結合根的判別式△>0,即可得出關于m的一元一次不等式,解之即可得出實數m的取值范圍.詳解:∵方程有兩個不相同的實數根,∴解得:m<1.故選D.點睛:本題考查了根的判別式,牢記“當△>0時,方程有兩個不相等的實數根”是解題的關鍵.9、C【分析】根據同弧所對的圓周角是圓心角的一半即可求出結論.【詳解】解:∵∴∠BOC=2∠A=60°故選C.【點睛】此題考查的是圓周角定理,掌握同弧所對的圓周角是圓心角的一半是解決此題的關鍵.10、A【分析】根據從左邊看得到的圖形是左視圖,可得答案.【詳解】從左邊看共一列,第一層是一個小正方形,第二層是一個小正方形,故選:A.【點睛】本題考查了簡單組合體的三視圖,從左邊看得到的圖形是左視圖.11、D【分析】根據白球兩個,摸出三個球必然有一個黑球.【詳解】解:A袋子中裝有4個黑球和2個白球,摸出的三個球中可能為兩個白球一個黑球,所以A不是必然事件;B.C.袋子中有4個黑球,有可能摸到的全部是黑球,B、C有可能不發生,所以B、C不是必然事件;D.白球只有兩個,如果摸到三個球不可能都是白梂,因此至少有一個是黑球,D正確.故選D.【點睛】本題考查隨機事件,解題關鍵在于根據題意對選項進行判斷即可.12、B【解析】試題分析:∵從半徑為9cm的圓形紙片上剪去圓周的一個扇形,∴留下的扇形的弧長==12π,根據底面圓的周長等于扇形弧長,∴圓錐的底面半徑r==6cm,∴圓錐的高為=3cm故選B.考點:圓錐的計算.二、填空題(每題4分,共24分)13、【分析】記原來三角形的面積為s,第一個小三角形的面積為,第二個小三角形的面積為,…,求出,,,探究規律后即可解決問題.【詳解】解:記原來三角形的面積為s,第一個小三角形的面積為,第二個小三角形的面積為,…,∵,,,∴,∴.故答案為:.【點睛】本題考查了三角形中位線定理,三角形的面積,圖形類規律探索等知識,解題的關鍵是循環從特殊到一般的探究方法,尋找規律,利用規律即可解決問題.14、(-2,-2)【分析】由題意直接利用頂點式的特點,即可求出拋物線的頂點坐標.【詳解】解:∵y=(x+2)2-2是拋物線的頂點式,∴拋物線的頂點坐標為(-2,-2).故答案為:(-2,-2).【點睛】本題主要考查的是二次函數的性質,掌握二次函數頂點式的特征是解題的關鍵.15、【分析】需要三步完成,所以采用樹狀圖法比較簡單,根據樹狀圖可以求得所有等可能的結果與出現三次正面朝上的情況,再根據概率公式求解即可.【詳解】畫樹狀圖得:∴一共有共8種等可能的結果;出現3次正面朝上的有1種情況.∴出現3次正面朝上的概率是故答案為.點評:此題考查了樹狀圖法概率.注意樹狀圖法可以不重不漏地表示出所有等可能的結果.用到的知識點為:概率=所求情況數與總情況數之比.16、5.1.【解析】試題分析:根據題意可知:BE=3m,DE=9m,△ABE∽△CDE,則,即,解得:CD=5.1m.點睛:本題注意考查的就是三角形相似實際應用的題目,難度在中等.在利用三角形相似,我們一般都是用來測量較高物體或無法直接測量的物體的高度,解決這種題目的時候,我們首先要找到有哪兩個三角形相似,然后根據相似三角形的邊成比例得出位置物體的高度.17、3【解析】根據中位數的定義進行求解即可得出答案.【詳解】將數據從小到大排列:1,2,3,5,6,處于最中間的數是3,∴中位數為3,故答案為:3.【點睛】本題考查了中位數的定義,中位數是將一組數據從小到大或從大到小排列,處于最中間(中間兩數的平均數)的數即為這組數據的中位數.18、6【分析】圖中三角形有:△AEG,△ADC,△CFG,△CBA,因為,,所以△AEG∽△ADC∽△CFG∽△CBA,有6中組合,據此可得出答案.【詳解】圖中三角形有:△AEG,△ADC,△CFG,△CBA,∵,,∴△AEG∽△ADC∽△CFG∽△CBA共有6個組合分別為:△AEG∽△ADC,△AEG∽△CFG,△AEG∽△CBA,△ADC∽△CFG,△ADC∽△CBA,△CFG∽△CBA故答案為6.【點睛】本題考查的是相似三角形的判定,熟練掌握相似三角形的判定方法是解題的關鍵.三、解答題(共78分)19、(1)見解析,點的坐標為,點的坐標為;(2)見解析.【分析】(1)根據位似圖形的性質:位似圖形面積的比等于相似比的平方,即可得出相似比,畫出圖形;根據格點即可寫出坐標;(2)根據圖形的旋轉的性質:圖形的旋轉是圖形上的每一點在平面上繞著某個固定點旋轉固定角度的位置移動,其中對應點到旋轉中心的距離相等,對應線段的長度、對應角的大小相等,旋轉前后圖形的大小和形狀沒有改變,畫出圖形即可.【詳解】如圖所示:點的坐標為,點的坐標為如圖所示.【點睛】此題主要考查位似圖形以及圖形旋轉的性質,熟練掌握,即可解題.20、(1)(3,2);(2)k=﹣1【分析】(1)由于PQ∥x軸,則點P的縱坐標為2,然后把y=2代入y=得到對應的自變量的值,從而得到P點坐標;(2)由于S△POQ=S△OMQ+S△OMP,根據反比例函數k的幾何意義得到|k|+×|6|=9,然后解方程得到滿足條件的k的值.【詳解】(1)∵PQ∥x軸,∴點P的縱坐標為2,把y=2代入y=得x=3,∴P點坐標為(3,2);(2)∵S△POQ=S△OMQ+S△OMP,∴|k|+×|6|=9,∴|k|=1,而k<0,∴k=﹣1.【點睛】本題主要考查了反比例函數的圖象與性質,掌握反比例函數k的幾何意義是解題的關鍵.21、(1)30;(2)圖見解析;(3)144°,30;(4).【分析】(1)根據等級為A的人數除以所占的百分比即可求出總人數;(2)根據條形統計圖得出A、C、D等級的人數,用總人數減A、C、D等級的人數即可;(3)計算C等級的人數所占總人數的百分比,即可求出表示等級的扇形的圓心角和的值;(4)利用列表法或樹狀圖法得出所有等可能的情況數,找出一名男生和一名女生的情況數,即可求出所求的概率.【詳解】解:(1)根據題意得成績為A等級的學生有3人,所占的百分比為10%,則3÷10%=30,即參加征文比賽的學生共有30人;(2)由條形統計圖可知A、C、D等級的人數分別為3人、12人、6人,則30?3?12?6=9(人),即B等級的人數為9人補全條形統計圖如下圖(3),,∴m=30(4)依題意,列表如下:男女女男(男,女)(男,女)女(男,女)(女,女)女(男,女)(女,女)由上表可知總共有6種結果,每種結果出現的可能性相同,其中所選兩名學生恰好是一男一女的結果共有4種,所以;或樹狀圖如下由上圖可知總共有6種結果,每種結果出現的可能性相同,其中所選兩名學生恰好是一男一女的結果共有4種,所以.【點睛】本題考查了條形統計圖、扇形統計圖以及利用列表法或者樹狀圖法求概率,弄清題意是解題的關鍵.22、(1)12m或16m;(2)195.【分析】(1)、根據AB=x可得BC=28-x,然后根據面積列出一元二次方程求出x的值;(2)、根據題意列出S和x的函數關系熟,然后根據題意求出x的取值范圍,然后根據函數的性質求出最大值.【詳解】(1)、∵AB=xm,則BC=(28﹣x)m,∴x(28﹣x)=192,解得:x1=12,x2=16,答:x的值為12m或16m(2)、∵AB=xm,∴BC=28﹣x,∴S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∵在P處有一棵樹與墻CD,AD的距離分別是16m和6m,∵28-x≥15,x≥6∴6≤x≤13,∴當x=13時,S取到最大值為:S=﹣(13﹣14)2+196=195,答:花園面積S的最大值為195平方米.【點睛】題主要考查了二次函數的應用以及二次函數最值求法,得出S與x的函數關系式是解題關鍵.23、(2)y=﹣x2﹣x+2;(2)(0,2)或(﹣2,2)或(,﹣2)或(,﹣2);(3)2.【解析】(2)把點A、C的坐標分別代入函數解析式,列出關于系數的方程組,通過解方程組求得系數的值;(2)設M點坐標為(m,n),根據S△AOM=2S△BOC列出關于m的方程,解方程求出m的值,進而得到點P的坐標;(3)先運用待定系數法求出直線AC的解析式為y=x+2,再設N點坐標為(x,x+2),則D點坐標為(x,-x2-x+2),然后用含x的代數式表示ND,根據二次函數的性質即可求出線段ND長度的最大值.解:(2)A(﹣2,0),C(0,2)代入拋物線的解析式y=﹣x2+mx+n,得,解得,∴拋物線的解析式為y=﹣x2﹣x+2.(2)由(2)知,該拋物線的解析式為y=﹣x2﹣x+2,則易得B(2,0),設M(m,n)然后依據S△AOM=2S△BOC列方程可得:?AO×|n|=2××OB×OC,∴×2×|﹣m2﹣m+2|=2,∴m2+m=0或m2+m﹣4=0,解得m=0或﹣2或,∴符合條件的點M的坐標為:(0,2)或(﹣2,2)或(,﹣2)或(,﹣2).(3)設直線AC的解析式為y=kx+b,將A(﹣2,0),C(0,2)代入得到,解得,∴直線AC的解析式為y=x+2,設N(x,x+2)(﹣2≤x≤0),則D(x,﹣x2﹣x+2),ND=(﹣x2﹣x+2)﹣(x+2)=﹣x2﹣2x=﹣(x+2)2+2,∵﹣2<0,∴x=﹣2時,ND有最大值2.∴ND的最大值為2.點睛:本題考查二次函數的圖象和性質.根據二次函數的性質并結合已知條件及圖象進行分析是解題的關鍵.24、(1)y=x2﹣2x﹣3,-4;(2)①1;②﹣4≤n≤1【分析】(1)根據題意,設出二次函數交點式,點C坐標代入求出a值,把二次函數化成頂點式即可得到最小值;(2)①m=-4,直接代入二次函數表達式,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 22《塞下曲》課件【知識提要】四年級下冊語文統編版
- 山東省青島市南區青島大學路小學2024-2025學年數學四下期末質量跟蹤監視模擬試題含解析
- 武昌首義學院《武術AⅡ》2023-2024學年第二學期期末試卷
- 遵守宿舍公約宿舍一家人 課件-2024-2025學年高一下學期主題班會
- 西安科技大學高新學院《地理課程與教學論實踐》2023-2024學年第二學期期末試卷
- 江蘇省無錫市宜興中學2025屆初三下學期第一次質量檢測試題(語文試題理)試題含解析
- 內蒙古工業職業學院《口腔臨床醫學概論(口腔內科學)》2023-2024學年第二學期期末試卷
- 洛陽科技職業學院《大型公共建筑設計》2023-2024學年第二學期期末試卷
- 山東海事職業學院《文創產品開發》2023-2024學年第一學期期末試卷
- 聊城大學東昌學院《精準營銷》2023-2024學年第二學期期末試卷
- 思政微課紅色教育
- 傳染病防控與報告課件
- 食堂食品衛生管理領導小組及職責
- 電廠安全管理制度
- GB/T 10810.1-2025眼鏡鏡片第1部分:單焦和多焦
- 2025年安徽省馬鞍山花山公安分局輔警崗位招聘48人歷年自考難、易點模擬試卷(共500題附帶答案詳解)
- 克布爾堿十二號礦井專家意見的認定
- 儲能與燃機協同調峰:集成壓縮空氣儲能與燃煤系統的建模與熱力學分析
- 外科補液課件
- JJF(新) 122-2024 石油鉆修井指重表校準規范
- 北京市石景山區2024-2025學年九年級上學期期末英語試題(含答案)
評論
0/150
提交評論