




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆云南省南澗彝族自治縣數(shù)學九上期末聯(lián)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.一元二次方程x2+4x=﹣3用配方法變形正確的是()A.(x﹣2)=1 B.(x+2)=1 C.(x﹣2)=﹣1 D.(x+2)=﹣12.若點(2,3)在反比例函數(shù)y=的圖象上,那么下列各點在此圖象上的是()A.(-2,3) B.(1,5) C.(1,6) D.(1,-6)3.兩名同學在一次用頻率估計概率的試驗中統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制出統(tǒng)計圖如圖所示,則符合這一結(jié)果的試驗可能是()A.拋一枚硬幣,正面朝上的概率B.擲一枚正六面體的骰子,出現(xiàn)點的概率C.轉(zhuǎn)動如圖所示的轉(zhuǎn)盤,轉(zhuǎn)到數(shù)字為奇數(shù)的概率D.從裝有個紅球和個藍球的口袋中任取一個球恰好是藍球的概率4.已知二次函數(shù)的與的部分對應(yīng)值如表:下列結(jié)論:拋物線的開口向上;②拋物線的對稱軸為直線;③當時,;④拋物線與軸的兩個交點間的距離是;⑤若是拋物線上兩點,則,其中正確的個數(shù)是()A. B. C. D.5.如圖,點,,都在上,若,則為()A. B. C. D.6.如圖,⊙O是正方形ABCD與正六邊形AEFCGH的外接圓.則正方形ABCD與正六邊形AEFCGH的周長之比為()A.∶3 B.∶1 C.∶ D.1∶7.下列說法:四邊相等的四邊形一定是菱形順次連接矩形各邊中點形成的四邊形一定是正方形對角線相等的四邊形一定是矩形經(jīng)過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分其中正確的有個.A.4 B.3 C.2 D.18.已知點O是△ABC的外心,作正方形OCDE,下列說法:①點O是△AEB的外心;②點O是△ADC的外心;③點O是△BCE的外心;④點O是△ADB的外心.其中一定不成立的說法是()A.②④ B.①③ C.②③④ D.①③④9.用圖中兩個可自由轉(zhuǎn)動的轉(zhuǎn)盤做“配紫色”游戲:分別旋轉(zhuǎn)兩個轉(zhuǎn)盤,若其中一個轉(zhuǎn)出紅色,另-個轉(zhuǎn)出藍色即可配成紫色,則可配成紫色的概率是()轉(zhuǎn)盤一轉(zhuǎn)盤二A. B. C. D.10.某氣球內(nèi)充滿了一定質(zhì)量的氣體,當溫度不變時,氣球內(nèi)氣體的氣壓p(kPa)是氣體體積V()的反比例函數(shù),其圖象如圖所示,當氣球內(nèi)的氣壓大于120kPa時,氣球?qū)ǎ瑸榱税踩鹨?,氣球的體積應(yīng)()A.不小于 B.大于 C.不小于 D.小于11.反比例函數(shù)y=的圖象經(jīng)過點(3,﹣2),下列各點在圖象上的是()A.(﹣3,﹣2) B.(3,2) C.(﹣2,﹣3) D.(﹣2,3)12.在一個不透明的布袋中裝有紅色.白色玻璃球共40個,除顏色外其他完全相同,小明通過多次摸球試驗后發(fā)現(xiàn),其中摸到白色球的頻率穩(wěn)定在85%左右,則口袋中紅色球可能有().A.34個 B.30個 C.10個 D.6個二、填空題(每題4分,共24分)13.如圖,在平面直角坐標系中,直線l的函數(shù)表達式為y=x,點O1的坐標為(1,0),以O(shè)1為圓心,O1O為半徑畫圓,交直線l于點P1,交x軸正半軸于點O2,以O(shè)2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3,以O(shè)3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4;…按此做法進行下去,其中的長為_____.14.將邊長為的正方形繞點按順時針方向旋轉(zhuǎn)到的位置(如圖),使得點落在對角線上,與相交于點,則=_________.(結(jié)果保留根號)15.平面直角坐標系中,點A,B的坐標分別是A(2,4),B(3,0),在第一象限內(nèi)以原點O為位似中心,把△OAB縮小為原來的,則點A的對應(yīng)點A'的坐標為__________.16.如圖,點、、…在反比例函數(shù)的圖象上,點、、……在反比例函數(shù)的圖象上,,且,則(為正整數(shù))的縱坐標為______.(用含的式子表示)17.某種商品的標價為400元/件,經(jīng)過兩次降價后的價格為324元/件,并且兩次降價的百分率相同,則該商品每次降價的百分率為_____.18.方程x2﹣4x﹣6=0的兩根和等于_____,兩根積等于_____.三、解答題(共78分)19.(8分)先閱讀,再填空解題:(1)方程:的根是:________,________,則________,________.(2)方程的根是:________,________,則________,________.(3)方程的根是:________,________,則________,________.(4)如果關(guān)于的一元二次方程(且、、為常數(shù))的兩根為,,根據(jù)以上(1)(2)(3)你能否猜出:,與系數(shù)、、有什么關(guān)系?請寫出來你的猜想并說明理由.20.(8分)二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:(1)寫出方程ax2+bx+c=0的兩個根;(2)寫出不等式ax2+bx+c>0的解集;(3)寫出y隨x的增大而減小的自變量x的取值范圍.21.(8分)解一元二次方程22.(10分)數(shù)學概念若點在的內(nèi)部,且、和中有兩個角相等,則稱是的“等角點”,特別地,若這三個角都相等,則稱是的“強等角點”.理解概念(1)若點是的等角點,且,則的度數(shù)是.(2)已知點在的外部,且與點在的異側(cè),并滿足,作的外接圓,連接,交圓于點.當?shù)倪厺M足下面的條件時,求證:是的等角點.(要求:只選擇其中一道題進行證明!)①如圖①,②如圖②,深入思考(3)如圖③,在中,、、均小于,用直尺和圓規(guī)作它的強等角點.(不寫作法,保留作圖痕跡)(4)下列關(guān)于“等角點”、“強等角點”的說法:①直角三角形的內(nèi)心是它的等角點;②等腰三角形的內(nèi)心和外心都是它的等角點;③正三角形的中心是它的強等角點;④若一個三角形存在強等角點,則該點到三角形三個頂點的距離相等;⑤若一個三角形存在強等角點,則該點是三角形內(nèi)部到三個頂點距離之和最小的點,其中正確的有.(填序號)23.(10分)如圖,在矩形ABCD中,E是邊CD的中點,點M是邊AD上一點(與點A,D不重合),射線ME與BC的延長線交于點N.(1)求證:△MDE≌△NCE;(2)過點E作EF//CB交BM于點F,當MB=MN時,求證:AM=EF.24.(10分)如圖,拋物線經(jīng)過點,點,交軸于點,連接,.(1)求拋物線的解析式;(2)點為拋物線第二象限上一點,滿足,求點的坐標;(3)將直線繞點順時針旋轉(zhuǎn),與拋物線交于另一點,求點的坐標.25.(12分)現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高度發(fā)展,據(jù)調(diào)查,某家小型“大學生自主創(chuàng)業(yè)”的快遞公司,今年三月份與五月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件,現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.(1)求該快遞公司投遞總件數(shù)的月平均增長率;(2)如果按此速度增漲,該公司六月份的快遞件數(shù)將達到多少萬件?26.某商店經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品,規(guī)定試銷期間銷售單價不低于成本價.據(jù)試銷發(fā)現(xiàn),月銷量(千克)與銷售單價(元)符合一次函數(shù).若該商店獲得的月銷售利潤為元,請回答下列問題:(1)請寫出月銷售利潤與銷售單價之間的關(guān)系式(關(guān)系式化為一般式);(2)在使顧客獲得實惠的條件下,要使月銷售利潤達到8000元,銷售單價應(yīng)定為多少元?(3)若獲利不高于,那么銷售單價定為多少元時,月銷售利潤達到最大?
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)一元二次方程的配方法即可求出答案.【詳解】解:∵x2+4x=﹣3,∴x2+4x+4=1,∴(x+2)2=1,故選:B.【點睛】本題考查解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.2、C【解析】將(2,3)代入y=即可求出k的值,再根據(jù)k=xy解答即可.【詳解】∵點(2,3)在反比例函數(shù)y=(k≠0)的圖象上,∴k=xy=2×3=6,A、∵-2×3=-6≠6,∴此點不在函數(shù)圖象上;B、∵1×5=5≠6,∴此點不在函數(shù)圖象上;C、∵1×6=6,此點在函數(shù)圖象上;D、∵1×(-6)=-6≠6,此點不在函數(shù)圖象上.故選:C.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,只要點在函數(shù)的圖象上,則一定滿足函數(shù)的解析式.反之,只要滿足函數(shù)解析式就一定在函數(shù)的圖象上.3、D【分析】根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.【詳解】解:A、擲一枚硬幣,出現(xiàn)正面朝上的概率為,故此選項不符合題意;B、擲一枚正六面體的骰子,出現(xiàn)點的概率為,故此選項不符合題意;C、轉(zhuǎn)動如圖所示的轉(zhuǎn)盤,轉(zhuǎn)到數(shù)字為奇數(shù)的概率為,故此選項不符合題意;D、從裝有個紅球和個藍球的口袋中任取一個球恰好是藍球的概率為,故此選項符合題意.故選:D.【點睛】此題考查了利用頻率估計概率,屬于常見題型,明確大量反復試驗下頻率穩(wěn)定值即概率是解答的關(guān)鍵.4、B【分析】先利用交點式求出拋物線解析式,則可對①進行判斷;利用拋物線的對稱性可對②進行判斷;利用拋物線與x軸的交點坐標為(0,0),(4,0)可對③④進行判斷;根據(jù)二次函數(shù)的性質(zhì)求出x的值,即可對⑤進行判斷.【詳解】設(shè)拋物線解析式為y=ax(x﹣4),把(﹣1,5)代入得5=a×(﹣1)×(﹣1﹣4),解得:a=1,∴拋物線解析式為y=x2﹣4x,所以①正確;拋物線的對稱軸為直線x==2,所以②正確;∵拋物線與x軸的交點坐標為(0,0),(4,0),開口向上,∴當0<x<4時,y<0,所以③錯誤;拋物線與x軸的兩個交點間的距離是4,所以④正確;若A(x1,2),B(x2,3)是拋物線上兩點,由x2﹣4x=2,解得:x1=,由x2﹣4x=3,解得:x2=,若取x1=,x2=,則⑤錯誤.故選:B.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點坐標問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).5、D【分析】直接根據(jù)圓周角定理求解.【詳解】∵∠C=34°,
∴∠AOB=2∠C=68°.
故選:D.【點睛】此題考查圓周角定理,解題關(guān)鍵在于掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.6、A【分析】計算出在半徑為R的圓中,內(nèi)接正方形和內(nèi)接正六邊形的邊長即可求出.【詳解】解:設(shè)此圓的半徑為R,則它的內(nèi)接正方形的邊長為R,它的內(nèi)接正六邊形的邊長為R,內(nèi)接正方形和內(nèi)接正六邊形的周長比為:4R:6R=∶1.故選:A.【點睛】本題考查了正多邊形和圓,找出內(nèi)接正方形與內(nèi)接正六邊形的邊長關(guān)系,是解決問題的關(guān)鍵.7、C【詳解】∵四邊相等的四邊形一定是菱形,∴①正確;∵順次連接矩形各邊中點形成的四邊形一定是菱形,∴②錯誤;∵對角線相等的平行四邊形才是矩形,∴③錯誤;∵經(jīng)過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分,∴④正確;其中正確的有2個,故選C.考點:中點四邊形;平行四邊形的性質(zhì);菱形的判定;矩形的判定與性質(zhì);正方形的判定.8、A【分析】根據(jù)三角形的外心得出OA=OC=OB,根據(jù)正方形的性質(zhì)得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐個判斷即可.【詳解】解:如圖,連接OB、OD、OA,∵O為銳角三角形ABC的外心,∴OA=OC=OB,∵四邊形OCDE為正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故選:A.【點睛】本題考查了正方形的性質(zhì)和三角形的外心.熟記三角形的外心到三個頂點的距離相等是解決此題的關(guān)鍵.9、B【分析】將轉(zhuǎn)盤一平均分成3份,即將轉(zhuǎn)盤一標“藍”的部分平均分成兩部分,分別記為藍、藍,再利用列表法列出所有等可能事件,根據(jù)題意求概率即可.【詳解】解:將轉(zhuǎn)盤一標“藍”的部分平均分成兩部分,分別記為藍、藍,即轉(zhuǎn)盤-平均分成三等份,列表如下:紅紅藍黃紅(紅,紅)(紅,紅)(紅,藍)(紅,黃)藍(藍,紅)(藍,紅)(藍,藍)(藍,黃)藍(藍,紅)(藍,紅)(藍,藍)(藍,黃)由表格可知,共有12種等可能的結(jié)果,其中能配成紫色的結(jié)果有5種,所以可配成紫色的概率是.故選B.【點睛】本題考查了概率,用列表法求概率時,必須是等可能事件,這是本題的易錯點,熟練掌握列表法是解題的關(guān)鍵.10、C【解析】由題意設(shè)設(shè),把(1.6,60)代入得到k=96,推出,當P=120時,,由此即可判斷.【詳解】因為氣球內(nèi)氣體的氣壓p(kPa)是氣體體積V()的反比例函數(shù),所以可設(shè),由題圖可知,當時,,所以,所以.為了安全起見,氣球內(nèi)的氣壓應(yīng)不大于120kPa,即,所以.故選C.【點睛】此題考查反比例函數(shù)的應(yīng)用,解題關(guān)鍵在于把已知點代入解析式.11、D【解析】分析:直接利用反比例函數(shù)圖象上點的坐標特點進而得出答案.詳解:∵反比例函數(shù)y=的圖象經(jīng)過點(3,-2),∴xy=k=-6,A、(-3,-2),此時xy=-3×(-2)=6,不合題意;B、(3,2),此時xy=3×2=6,不合題意;C、(-2,-3),此時xy=-3×(-2)=6,不合題意;D、(-2,3),此時xy=-2×3=-6,符合題意;故選D.點睛:此題主要考查了反比例函數(shù)圖象上點的坐標特征,正確得出k的值是解題關(guān)鍵.12、D【解析】由頻數(shù)=數(shù)據(jù)總數(shù)×頻率計算即可.【詳解】解:∵摸到白色球的頻率穩(wěn)定在85%左右,∴口袋中白色球的頻率為85%,故白球的個數(shù)為40×85%=34個,∴口袋中紅色球的個數(shù)為40-34=6個故選D.【點睛】本題考查了利用頻率估計概率,難度適中.大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率來估計概率,這個固定的近似值就是這個事件的概率.二、填空題(每題4分,共24分)13、22015π【分析】連接P1O1,P2O2,P3O3,易求得PnOn垂直于x軸,可知為圓的周長,再找出圓半徑的規(guī)律即可解題.【詳解】解:連接P1O1,P2O2,P3O3…,∵P1是⊙O1上的點,∴P1O1=OO1,∵直線l解析式為y=x,∴∠P1OO1=45°,∴△P1OO1為等腰直角三角形,即P1O1⊥x軸,同理,PnOn垂直于x軸,∴為圓的周長,∵以O(shè)1為圓心,O1O為半徑畫圓,交x軸正半軸于點O2,以O(shè)2為圓心,O2O為半徑畫圓,交x軸正半軸于點O3,以此類推,∴OO1=1=20,OO2=2=21,OO3=4=22,OO4=8=23,…,∴OOn=,∴,∴,故答案為:22015π.【點睛】本題考查了圖形類規(guī)律探索、一次函數(shù)的性質(zhì)、等腰直角三角形的性質(zhì)以及弧長的計算,本題中準確找到圓半徑的規(guī)律是解題的關(guān)鍵.14、【分析】先根據(jù)正方形的性質(zhì)得到CD=1,∠CDA=90°,再利用旋轉(zhuǎn)的性質(zhì)得CF=,根據(jù)正方形的性質(zhì)得∠CFE=45°,則可判斷△DFH為等腰直角三角形,從而計算CF-CD即可.【詳解】∵四邊形ABCD為正方形,∴CD=1,∠CDA=90°,∵邊長為1的正方形ABCD繞點C按順時針方向旋轉(zhuǎn)到FECG的位置,使得點D落在對角線CF上,∴CF=,∠CFDE=45°,∴△DFH為等腰直角三角形,∴DH=DF=CF-CD=-1.故答案為-1.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了正方形的性質(zhì).15、(1,2)【分析】根據(jù)平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標的比等于k或-k,結(jié)合題中是在第一象限內(nèi)進行變換進一步求解即可.【詳解】由題意得:在第一象限內(nèi),以原點為位似中心,把△OAB縮小為原來的,則點A的對應(yīng)點A'的坐標為A(2×,4×),即(1,2).故答案為:(1,2).【點睛】本題主要考查了直角坐標系中位似圖形的變換,熟練掌握相關(guān)方法是解題關(guān)鍵.16、【分析】先證明是等邊三角形,求出的坐標,作高線,再證明是等邊三角形,作高線,設(shè),根據(jù),解方程可得等邊三角形的邊長和的縱坐標,同理依次得出結(jié)論,并總結(jié)規(guī)律:發(fā)現(xiàn)點、、…在軸的上方,縱坐標為正數(shù),點、、……在軸的下方,縱坐標為負數(shù),可以利用來解決這個問題.【詳解】過作軸于,∵,,是等邊三角形,,,和,過作軸于,∵,是等邊三角形,設(shè),則,中,,,∵,解得:(舍),,,,即的縱坐標為;過作軸于,同理得:是等邊三角形,設(shè),則,中,,,∵,解得:(舍),;,,即的縱坐標為;…(為正整數(shù))的縱坐標為:;故答案為;【點睛】本題考查了待定系數(shù)法求反比例函數(shù)解析式,等邊三角形的性質(zhì)和判定,直角三角形度角的性質(zhì),勾股定理,反比例函數(shù)圖象上點的坐標特征,并與方程相結(jié)合解決問題.17、10%【解析】設(shè)該種商品每次降價的百分率為x%,根據(jù)“兩次降價后的售價=原價×(1-降價百分比)的平方”,即可得出關(guān)于x的一元二次方程,解方程即可得出結(jié)論.【詳解】設(shè)該種商品每次降價的百分率為x%,依題意得:400×(1-x%)2=324,解得:x=10,或x=190(舍去).答:該種商品每次降價的百分率為10%.故答案為:10%【點睛】本題考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)數(shù)量關(guān)系得出關(guān)于x的一元二次方程.18、4﹣6【分析】根據(jù)一元二次方程根與系數(shù)的關(guān)系即可得答案.【詳解】設(shè)方程的兩個根為x1、x2,∵a=1,b=-4,c=-6,∴x1+x2=-=4,x1·x2==-6,故答案為4,﹣6【點睛】本題考查一元二次方程根與系數(shù)的關(guān)系,若一元二次方程y=ax2+bx+c(a≠0)的兩個根為x1、x2,那么,x1+x2=-,x1·x2=;熟練掌握韋達定理是解題關(guān)鍵.三、解答題(共78分)19、(1)-2,1,-1,2;(2)3,,,;(3)5,-1,4,-5;(4),,理由見解析【分析】(1)利用十字相乘法求出方程的解,即可得到答案;(2)利用十字相乘法求出方程的解,即可得到答案;(3)利用十字相乘法求出方程的解,即可得到答案;(4)利用公式法求出方程的解,即可得到答案.【詳解】(1)∵,∴(x+2)(x-1)=0,∴,,∴,;故答案為:-2,1,-1,2;(2)∵,∴(x-3)(2x-1)=0,∴,,∴,,故答案為:3,,,;(3)∵,∴(x-5)(x+1)=0,∴,,∴,,故答案為:5,-1,4,-5;(4),與系數(shù)、、的關(guān)系是:,,理由是有兩根為,,∴,.【點睛】此題考查解一元二次方程,一元二次方程根與系數(shù)的關(guān)系,根據(jù)方程的特點選擇適合的解法是解題的關(guān)鍵.20、(1)x1=1,x2=3;(2)1<x<3;(3)x>2.【分析】(1)利用拋物線與x軸的交點坐標寫出方程ax2+bx+c=0的兩個根;(2)寫出函數(shù)圖象在x軸上方時所對應(yīng)的自變量的范圍即可;(3)根據(jù)函數(shù)圖象可得答案.【詳解】解:(1)由函數(shù)圖象可得:方程ax2+bx+c=0的兩個根為x1=1,x2=3;(2)由函數(shù)圖象可得:不等式ax2+bx+c>0的解集為:1<x<3;(3)由函數(shù)圖象可得:當x>2時,y隨x的增大而減小.【點睛】本題考查了拋物線與x軸的交點問題、根據(jù)函數(shù)圖象求不等式解集以及二次函數(shù)的性質(zhì),注意數(shù)形結(jié)合思想的應(yīng)用.21、(1)x1=1,x2=3,(2)【分析】(1)根據(jù)因式分解法解一元二次方程即可;(2)利用公式法求一元二次方程即可.【詳解】(1)即∴或∴(2)【點睛】本題主要考查解一元二次方程,掌握一元二次方程的解法并靈活應(yīng)用是解題的關(guān)鍵.22、(1)100、130或1;(2)選擇①或②,理由見解析;(3)見解析;(4)③⑤【分析】(1)根據(jù)“等角點”的定義,分類討論即可;(2)①根據(jù)在同圓中,弧和弦的關(guān)系和同弧所對的圓周角相等即可證明;②弧和弦的關(guān)系和圓的內(nèi)接四邊形的性質(zhì)即可得出結(jié)論;(3)根據(jù)垂直平分線的性質(zhì)、等邊三角形的性質(zhì)、弧和弦的關(guān)系和同弧所對的圓周角相等作圖即可;(4)根據(jù)“等角點”和“強等角點”的定義,逐一分析判斷即可.【詳解】(1)(i)若=時,∴==100°(ii)若時,∴(360°-)=130°;(iii)若=時,360°--=1°,綜上所述:=100°、130°或1°故答案為:100、130或1.(2)選擇①:連接∵∴∴∵,∴∴是的等角點.選擇②連接∵∴∴∵四邊形是圓的內(nèi)接四邊形,∴∵∴∴是的等角點(3)作BC的中垂線MN,以C為圓心,BC的長為半徑作弧交MN與點D,連接BD,根據(jù)垂直平分線的性質(zhì)和作圖方法可得:BD=CD=BC∴△BCD為等邊三角形∴∠BDC=∠BCD=∠DBC=60°作CD的垂直平分線交MN于點O以O(shè)為圓心OB為半徑作圓,交AD于點Q,圓O即為△BCD的外接圓∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=(360°-∠BQC)=120°∴∠BQA=∠CQA=∠BQC如圖③,點即為所求.(4)③⑤.①如下圖所示,在RtABC中,∠ABC=90°,O為△ABC的內(nèi)心假設(shè)∠BAC=60°,∠ACB=30°∵點O是△ABC的內(nèi)心∴∠BAO=∠CAO=∠BAC=30°,∠ABO=∠CBO=∠ABC=45°,∠ACO=∠BCO=∠ACB=15°∴∠AOC=180°-∠CAO-∠ACO=135°,∠AOB=180°-∠BAO-∠ABO=105°,∠BOC=180°-∠CBO-∠BCO=120°顯然∠AOC≠∠AOB≠∠BOC,故①錯誤;②對于鈍角等腰三角形,它的外心在三角形的外部,不符合等角點的定義,故②錯誤;③正三角形的每個中心角都為:360°÷3=120°,滿足強等角點的定義,所以正三角形的中心是它的強等角點,故③正確;④由(3)可知,點Q為△ABC的強等角,但Q不在BC的中垂線上,故QB≠Q(mào)C,故④錯誤;⑤由(3)可知,當?shù)娜齻€內(nèi)角都小于時,必存在強等角點.如圖④,在三個內(nèi)角都小于的內(nèi)任取一點,連接、、,將繞點逆時針旋轉(zhuǎn)到,連接,∵由旋轉(zhuǎn)得,,∴是等邊三角形.∴∴∵、是定點,∴當、、、四點共線時,最小,即最?。敒榈膹姷冉屈c時,,此時便能保證、、、四點共線,進而使最?。蚀鸢笧椋孩邰荩军c睛】此題考查的是新定義類問題、圓的基本性質(zhì)、圓周角定理、圓的內(nèi)接多邊形綜合大題,掌握“等角點”和“強等角點”的定義、圓的基本性質(zhì)、圓周角定理、圓的內(nèi)接多邊形中心角公式和分類討論的數(shù)學思想是解決此題的關(guān)鍵.23、(1)見解析;(2)見解析.【分析】(1)由平行線的性質(zhì)得出∠DME=∠CNE,∠MDE=∠ECN,可證明△MDE≌△NCE(AAS);(2)過點M作MG⊥BN于點G,由等腰三角形的性質(zhì)得出BG=BN=BN,由中位線定理得出EF=BN,則可得出結(jié)論.【詳解】解:(1)證明:∵四邊形ABCD為矩形,∴AD//BC,∴∠DME=∠CNE,∠MDE=∠ECN,∵E為CD的中點,∴DE=CE,∴△MDE≌△NCE(AAS);(2)證明:過點M作MG⊥BN于點G,∵BM=MN,∴BG=BN=BN,∵矩形ABCD中,∠A=∠ABG=90°,又∵MG⊥BN,∴∠BGM=90°,∴四邊形ABGM為矩形,∴AM=BG=,∵EF//BN,E為DC的中點,∴F為BM的中點,∴EF=BN,∴AM=EF.【點睛】本題考查了矩形的性質(zhì),等腰三角形的性質(zhì),中位線定理,全等三角形的判定與性質(zhì)等知識,熟練掌握矩形的性質(zhì)是解題的關(guān)鍵.24、(1);(2)或;(3).【分析】(1)將A,C坐標代入中解出即可;(2)由可得,設(shè),利用三角形的面積求法建立方程求解即可得出結(jié)論;(3)延長AC與BE交于點F,易證△ABC是直角三角形可知△ACF是等腰直角三角形,由,,可得A是CF的中點,所以F(2,-2),進而確定直線BF的解析式為,即可求出E點坐標.【詳解】(1)將點,代入得:∴,,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 炎黃職業(yè)技術(shù)學院《海洋化學》2023-2024學年第二學期期末試卷
- 天津科技大學《文化創(chuàng)意產(chǎn)品設(shè)計》2023-2024學年第一學期期末試卷
- 內(nèi)蒙古呼和浩特市賽罕區(qū)市級名校2025年初三第四次調(diào)研診斷考試數(shù)學試題理試題含解析
- 吉林職業(yè)技術(shù)學院《土壤科學》2023-2024學年第一學期期末試卷
- 武漢工商學院《舞蹈與形體》2023-2024學年第二學期期末試卷
- 攀枝花學院《高速鐵路概論》2023-2024學年第二學期期末試卷
- 宜春幼兒師范高等專科學?!吨参锉=∨c和諧植?!?023-2024學年第二學期期末試卷
- 二零二五版外籍工作人員聘用合同范例
- 二零二五版?zhèn)€人房產(chǎn)抵押合同書范文
- 范文房產(chǎn)抵押擔保合同模板二零二五年
- 鋰電池起火應(yīng)急演練
- 2022年四川省阿壩州中考數(shù)學試卷
- 【年產(chǎn)20萬噸丙烯酸工藝設(shè)計13000字(論文)】
- 分布式光伏經(jīng)濟評價規(guī)范
- 軌道交通噪聲與振動控制技術(shù)研究
- 乾坤未定吾皆黑馬+高考沖刺百日誓師主題班會
- 安徽省合肥市2024屆高三第一次教學質(zhì)量檢查數(shù)學試卷及答案
- 2024年四川成都地鐵運營有限公司招聘筆試參考題庫含答案解析
- 廣東省地質(zhì)災(zāi)害危險性評估實施細則(2023年修訂版)
- 《非稅收入征收管理》課件
- 與小三分手的協(xié)議書
評論
0/150
提交評論