2025屆上海浦東第四教育署九年級數學第一學期期末檢測模擬試題含解析_第1頁
2025屆上海浦東第四教育署九年級數學第一學期期末檢測模擬試題含解析_第2頁
2025屆上海浦東第四教育署九年級數學第一學期期末檢測模擬試題含解析_第3頁
2025屆上海浦東第四教育署九年級數學第一學期期末檢測模擬試題含解析_第4頁
2025屆上海浦東第四教育署九年級數學第一學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆上海浦東第四教育署九年級數學第一學期期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.下列幾何體中,主視圖是三角形的是()A. B. C. D.2.已知三角形兩邊長為4和7,第三邊的長是方程的一個根,則第三邊長是()A.5 B.5或11 C.6 D.113.下列方程中,沒有實數根的方程是()A.(x-1)2=2C.3x24.已知線段CD是由線段AB平移得到的,點A(–1,4)的對應點為C(4,7),則點B(–4,–1)的對應點D的坐標為()A.(1,2) B.(2,9) C.(5,3) D.(–9,–4)5.某校進行體操隊列訓練,原有8行10列,后增加40人,使得隊伍增加的行數、列數相同,你知道增加了多少行或多少列嗎?設增加了行或列,則列方程得()A.(8﹣)(10﹣)=8×10﹣40 B.(8﹣)(10﹣)=8×10+40C.(8+)(10+)=8×10﹣40 D.(8+)(10+)=8×10+406.下列事件中,屬于必然事件的是()A.方程無實數解B.在某交通燈路口,遇到紅燈C.若任取一個實數a,則D.買一注福利彩票,沒有中獎7.如圖,是的直徑,是的弦,若,則().A. B. C. D.8.拋物線y=ax2+bx+c(a≠0)如圖所示,下列結論:①b2﹣4ac>0;②a+b+c=2;③abc<0;④a﹣b+c<0,其中正確的有()A.1個 B.2個 C.3個 D.4個9.如圖,AB是⊙O的直徑,點C,D在直徑AB一側的圓上(異于A,B兩點),點E在直徑AB另一側的圓上,若∠E=42°,∠A=60°,則∠B=()A.62° B.70° C.72° D.74°10.已知一個正多邊形的一個外角為銳角,且其余弦值為,那么它是正()邊形.A.六 B.八 C.十 D.十二二、填空題(每小題3分,共24分)11.若點A(1,y1)和點B(2,y2)在反比例函數y=﹣的圖象上,則y1與y2的大小關系是_____.12.一個多邊形的每個外角都是36°,這個多邊形是______邊形.13.如圖,已知⊙O的半徑是2,點A、B、C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為_____.14.如圖三角形ABC是圓O的內接正三角形,弦EF經過BC邊的中點D,且EF平行AB,若AB等于6,則EF等于________.15.已知二次函數的圖象經過原點,則的值為_______.16.在如圖所示的電路圖中,當隨機閉合開關,,中的兩個時,能夠讓燈泡發光的概率為________.17.在本賽季比賽中,某運動員最后六場的得分情況如下:則這組數據的極差為_______.18.對于為零的兩個實數a,b,如果規定:a☆b=ab-b-1,那么x☆(2☆x)=0中x值為____.三、解答題(共66分)19.(10分)某興趣小組為了了解本校學生參加課外體育鍛煉情況,隨機抽取本校40名學生進行問卷調查,統計整理并繪制了如下兩幅尚不完整的統計圖:根據以上信息解答下列問題:(1)課外體育鍛煉情況統計圖中,“經常參加”所對應的圓心角的度數為;“經常參加課外體育鍛煉的學生最喜歡的一種項目”中,喜歡足球的人數有人,補全條形統計圖.(2)該校共有1200名學生,請估計全校學生中經常參加課外體育鍛煉并喜歡的項目是乒乓球的人數有多少人?(3)若在“乒乓球”、“籃球”、“足球”、“羽毛球”項目中任選兩個項目成立興趣小組,請用列表法或畫樹狀圖的方法求恰好選中“乒乓球”、“籃球”這兩個項目的概率.20.(6分)如圖,拋物線y=﹣x2+4x+m﹣4(m為常數)與y軸交點為C,M(3,0)、N(0,﹣2)分別是x軸、y軸上的點.(1)求點C的坐標(用含m的代數式表示);(2)若拋物線與x軸有兩個交點A、B,是否存在這樣的m,使得線段AB=MN,若存在,求出m的值,若不存在,請說明理由;(3)若拋物線與線段MN有公共點,求m的取值范圍.21.(6分)如圖,直線y=2x-6與反比例函數的圖象交于點A(4,2),與x軸交于點B.(1)求k的值及點B的坐標;(2)求△OAB的面積.22.(8分)如圖,在□中,是上一點,且,與的延長線交點.(1)求證:△∽△;(2)若△的面積為1,求□的面積.23.(8分)如圖所示,在矩形OABC中,OA=5,AB=4,點D為邊AB上一點,將△BCD沿直線CD折疊,使點B恰好落在OA邊上的點E處,分別以OC,OA所在的直線為x軸,y軸建立平面直角坐標系.(1)求OE的長.(2)求經過O,D,C三點的拋物線的解析式.(3)一動點P從點C出發,沿CB以每秒2個單位長的速度向點B運動,同時動點Q從E點出發,沿EC以每秒1個單位長的速度向點C運動,當點P到達點B時,兩點同時停止運動.設運動時間為t秒,當t為何值時,DP=DQ.(4)若點N在(2)中的拋物線的對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使得以M,N,C,E為頂點的四邊形是平行四邊形?若存在,直接寫出M點的坐標;若不存在,請說明理由.24.(8分)如圖,在正方形網格中,每個小正方形的邊長均為1個單位.(1)△ABC繞著點C順時針旋轉90°,畫出旋轉后對應的△A1B1C1;(2)求△ABC旋轉到△A1B1C時,的長.25.(10分)(1);(2)已知一個幾何體的三視圖如圖所示,求該幾何體的體積.26.(10分)一個不透明的口袋中有四個完全相同的小球,把它們分別標號為1,2,3,4.隨機摸取一個小球然后放回,再隨機摸出一個小球,請用樹狀圖或列表法求下列事件的概率.(1)兩次取出的小球的標號相同;(2)兩次取出的小球標號的和等于6.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】主視圖是從正面看所得到的圖形,據此判斷即可.【詳解】解:A、正方體的主視圖是正方形,故此選項錯誤;B、圓柱的主視圖是長方形,故此選項錯誤;C、圓錐的主視圖是三角形,故此選項正確;D、六棱柱的主視圖是長方形,中間還有兩條豎線,故此選項錯誤;故選:C.【點睛】此題主要考查了幾何體的三視圖,解此題的關鍵是熟練掌握幾何體的主視圖.2、A【分析】求出方程的解x1=11,x2=1,分為兩種情況:①當x=11時,此時不符合三角形的三邊關系定理;②當x=1時,此時符合三角形的三邊關系定理,即可得出答案.【詳解】解:x2-16x+11=0,

(x-11)(x-1)=0,

x-11=0,x-1=0,

解得:x1=11,x2=1,

①當x=11時,

∵4+7=11,

∴此時不符合三角形的三邊關系定理,

∴11不是三角形的第三邊;

②當x=1時,三角形的三邊是4、7、1,

∵此時符合三角形的三邊關系定理,

∴第三邊長是1.

故選:A.【點睛】本題考查了解一元二次方程和三角形的三邊關系定理的應用,注意:求出的第三邊的長,一定要看看是否符合三角形的三邊關系定理,即a+b>c,b+c>a,a+c>b,題型較好,但是一道比較容易出錯的題目.3、D【解析】先把方程化為一般式,再分別計算各方程的判別式的值,然后根據判別式的意義判斷方程根的情況.【詳解】解:A、方程化為一般形式為:x2-2x-1=0,△=(?2)2?4×1×(?1)=8>0,方程有兩個不相等的實數根,所以B、方程化為一般形式為:2x2-x-3=0,△=(?1)2?4×2×(?3)=25>0,方程有兩個不相等的實數根,所以C、△=(?2)2?4×3×(?1)=16>0,方程有兩個不相等的實數根,所以C選項錯誤;D、△=22?4×1×4=?12<0,方程沒有實數根,所以D選項正確.故選:D.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2?4ac:當△>0,方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.4、A【解析】∵線段CD是由線段AB平移得到的,而點A(?1,4)的對應點為C(4,7),∴由A平移到C點的橫坐標增加5,縱坐標增加3,則點B(?4,?1)的對應點D的坐標為(1,2).故選A5、D【解析】增加了行或列,現在是行,列,所以(8+)(10+)=8×10+40.6、A【分析】根據必然事件就是一定發生的事件,即發生的概率是1的事件即可得出答案.【詳解】解:A、方程2x2+3=0的判別式△=0﹣4×2×3=﹣24<0,因此方差2x2+3=0無實數解是必然事件,故本選項正確;B、在某交通燈路口,遇到紅燈是隨機事件,故本選項錯誤;C、若任取一個實數a,則(a+1)2>0是隨機事件,故本選項錯誤;D、買一注福利彩票,沒有中獎是隨機事件,故本選項錯誤;故選:A.【點睛】本題主要考察隨機事件,解題關鍵是熟練掌握隨機事件的定義.7、B【分析】根據AB是⊙O的直徑得出∠ADB=90°,再求出∠A的度數,由圓周角定理即可推出∠BCD的度數.【詳解】∵AB是⊙O的直徑,∴∠ADB=90°,∴在Rt△ABD中,∠A=90°﹣∠ABD=34°,∵弧BD=弧BD,∴∠BCD=∠A=34°,故選B.【點睛】本題考查圓周角定理及其推論,熟練掌握圓周角定理是解題的關鍵.8、D【分析】由拋物線的開口方向判斷a與1的關系,由拋物線與y軸的交點判斷c與1的關系,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【詳解】①∵拋物線與x軸有兩不同的交點,∴△=b2﹣4ac>1.故①正確;②∵拋物線y=ax2+bx+c的圖象經過點(1,2),∴代入得a+b+c=2.故②正確;③∵根據圖示知,拋物線開口方向向上,∴a>1.又∵對稱軸x=﹣<1,∴b>1.∵拋物線與y軸交與負半軸,∴c<1,∴abc<1.故③正確;④∵當x=﹣1時,函數對應的點在x軸下方,則a﹣b+c<1,故④正確;綜上所述,正確的結論是:①②③④,共有4個.故選:D.【點睛】本題考查了二次函數圖象與系數的關系.會利用對稱軸的范圍求2a與b的關系,以及二次函數與方程之間的轉換,根的判別式的熟練運用.9、C【分析】連接AC.根據圓周角定理求出∠CAB即可解決問題.【詳解】解:連接AC.∵∠DAB=60°,∠DAC=∠E=42°,∴∠CAB=60°﹣42°=18°,∵AB是直徑,∴∠ACB=90°,∴∠B=90°﹣18°=72°,故選:C.【點睛】本題主要考察圓周角定理,解題關鍵是連接AC.利用圓周角定理求出∠CAB.10、B【分析】利用任意凸多邊形的外角和均為360°,正多邊形的每個外角相等即可求出答案.【詳解】∵一個外角為銳角,且其余弦值為,∴外角=45°,∴360÷45=1.故它是正八邊形.故選:B.【點睛】本題考查根據正多邊形的外角判斷邊數,根據余弦值得到外角度數是解題的關鍵.二、填空題(每小題3分,共24分)11、y1<y1【分析】由k=-1可知,反比例函數y=﹣的圖象在每個象限內,y隨x的增大而增大,則問題可解.【詳解】解:∵反比例函數y=﹣中,k=﹣1<0,∴此函數在每個象限內,y隨x的增大而增大,∵點A(1,y1),B(1,y1)在反比例函數y=﹣的圖象上,1>1,∴y1<y1,故答案為y1<y1.【點睛】本題考查了反比例函數的增減性,解答關鍵是注意根據比例系數k的符號確定,在各個象限內函數的增減性解決問題.12、十【分析】根據正多邊形的性質,邊數等于360°除以每一個外角的度數.【詳解】∵一個多邊形的每個外角都是36°,∴n=360°÷36°=10,故答案為:十.【點睛】本題考查多邊形內角與外角,掌握多邊形的外角和為解題關鍵.13、【分析】連接OB和AC交于點D,根據菱形及直角三角形的性質先求出AC的長及∠AOC的度數,然后求出菱形ABCO及扇形AOC的面積,則由S扇形AOC-S菱形ABCO可得答案.【詳解】連接OB和AC交于點D,如圖所示:∵圓的半徑為2,∴OB=OA=OC=2,又四邊形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=S扇形AOC=則圖中陰影部分面積為S扇形AOC﹣S菱形ABCO=故答案為【點睛】本題考查扇形面積的計算及菱形的性質,解題關鍵是熟練掌握菱形的面積和扇形的面積,有一定的難度.14、【分析】設AC與EF交于點G,由于EF∥AB,且D是BC中點,易得DG是△ABC的中位線,即DG=3;易知△CDG是等腰三角形,可過C作AB的垂線,交EF于M,交AB于N;然后證DE=FG,根據相交弦定理得BD?DC=DE?DF,而BD、DC的長易知,DF=3+DE,由此可得到關于DE的方程,即可求得DE的長,EF=DF+DE=3+2DE,即可求得EF的長;【詳解】解:如圖,過C作CN⊥AB于N,交EF于M,則CM⊥EF,根據圓和等邊三角形的性質知:CN必過點O,∵EF∥AB,D是BC的中點,∴DG是△ABC的中位線,即DG=AB=3;∵∠ACB=60°,BD=DC=BC,AG=GC=AC,且BC=AC,∴△CGD是等邊三角形,∵CM⊥DG,∴DM=MG;∵OM⊥EF,由垂徑定理得:EM=MF,故DE=GF,∵弦BC、EF相交于點D,∴BD×DC=DE×DF,即DE×(DE+3)=3×3;解得DE=或(舍去);∴EF=3+2×=;【點睛】本題主要考查了相交弦定理,等邊三角形的性質,三角形中位線定理,垂徑定理,掌握相交弦定理,等邊三角形的性質,三角形中位線定理,垂徑定理是解題的關鍵.15、2;【分析】本題中已知了二次函數經過原點(1,1),因此二次函數與y軸交點的縱坐標為1,即m(m-2)=1,由此可求出m的值,要注意二次項系數m不能為1.【詳解】根據題意得:m(m?2)=1,∴m=1或m=2,∵二次函數的二次項系數不為零,所以m=2.故填2.【點睛】本題考查二次函數圖象上點的坐標特征,需理解二次函數與y軸的交點的縱坐標即為常數項的值.16、【分析】分析電路圖知:要讓燈泡發光,必須閉合,同時,中任意一個關閉時,滿足條件,從而求算概率.【詳解】分析電路圖知:要讓燈泡發光,必須閉合,同時,中任意一個關閉時,滿足:一共有:,,、,、,三種情況,滿足條件的有,、,兩種,∴能夠讓燈泡發光的概率為:故答案為:.【點睛】本題考查概率運算,分析出所有可能的結果,尋找出滿足條件的情況是解題關鍵.17、1【分析】極差是指一組數據中最大數據與最小數據的差.極差=最大值?最小值,根據極差的定義即可解答.【詳解】解:由題意可知,極差為28?12=1,

故答案為:1.【點睛】本題考查了極差的定義,解題時牢記定義是關鍵.18、0或2【分析】先根據a☆b=ab-b-1得出關于x的一元二次方程,求出x的值即可.【詳解】∵a☆b=ab-b-1,∴2☆x=2x-x-1=x-1,∴x☆(2☆x)=x☆(x-1)=0,即,解得:x1=0,x2=2;故答案為:0或2【點睛】本題考查了解一元二次方程以及新運算,理解題意正確列出一元二次方程是解題的關鍵.三、解答題(共66分)19、(1)144°,1;(2)180;(3).【解析】試題分析:(1)用“經常參加”所占的百分比乘以360°計算得到“經常參加”所對應的圓心角的度數;先求出“經常參加”的人數,然后減去其它各組人數得出喜歡足球的人數;進而補全條形圖;(2)用總人數乘以喜歡籃球的學生所占的百分比計算即可得解;(3)先利用樹狀圖展示所有12種等可能的結果數,找出選中的兩個項目恰好是“乒乓球”、“籃球”所占結果數,然后根據概率公式求解.試題解析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;“經常參加”的人數為:40×40%=16人,喜歡足的學生人數為:16﹣6﹣4﹣3﹣2=1人;補全統計圖如圖所示:故答案為:144°,1;(2)全校學生中經常參加課外體育鍛煉并喜歡的項目是乒乓球的人數約為:1200×=180人;(3)設A代表“乒乓球”、B代表“籃球”、C代表“足球”、D代表“羽毛球”,畫樹狀圖如下:共有12種等可能的結果數,其中選中的兩個項目恰好是“乒乓球”、“籃球”的情況占2種,所以選中“乒乓球”、“籃球”這兩個項目的概率是=.點睛:本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,然后利用概率公式求事件A或B的概率.也考查了樣本估計總體、扇形統計圖和條形統計圖.20、(1)(0,m﹣4);(1)存在,m=;(3)﹣≤m≤1【分析】(1)由題意得:點C的坐標為:(0,m﹣4);(1)存在,理由:令y=0,則x=1,則AB=1MN,即可求解;(3)聯立拋物線與直線MN的表達式得:方程﹣x1+4x+m﹣4x﹣1,即x1x﹣m+1=0中△≥0,且m﹣4≤﹣1,即可求解.【詳解】(1)由題意得:點C的坐標為:(0,m﹣4);(1)存在,理由:令y=0,則x=1,則AB=1MN,解得:m;(3)∵M(3,0),N(0,﹣1),∴直線MN的解析式為yx﹣1.∵拋物線與線段MN有公共點,則方程﹣x1+4x+m﹣4x﹣1,即x1x﹣m+1=0中△≥0,且m﹣4≤﹣1,∴()1﹣4(﹣m+1)≥0,解得:m≤1.【點睛】本題考查了二次函數綜合運用,涉及到一次函數的性質、解不等式、一元二次方程等,其中(3),確定△≥0,且m﹣4≤﹣1是解答本題的難點.21、(1)k=8,B(1,0);(2)1【分析】(1)利用待定系數法即可求出k的值,把y=0代入y=2x-6即可求出點B的坐標;(2)根據三角形的面積公式計算即可.【詳解】解:(1)把A(4,2)代入,得2=,解得k=8,在y=2x-6中,當y=0時,2x-6=0,解得x=1,∴點B的坐標為(1,0);(2)連接OA,∵點B(1,0),∴OB=1,∵A(4,2),∴△OAB=×1×2=1.【點睛】本題考查了待定系數法求反比例函數解析式,一次函數與x軸的交點問題,以及三角形的面積等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.22、(1)證明見解析;(2)24【分析】(1)利用平行線的性質得到∠ABF=∠E,即可證得結論;(2)根據平行線的性質證明△ABF∽△DEF,即可求出S△ABF=9,再根據AD=BC=4DF,求出S△CBE=16,即可求出答案.【詳解】證明:(1)在□ABCD中,∠A=∠C,AB∥CD,∴∠ABF=∠E,∴△ABF∽△CEB;(2)在□ABCD中,AD∥BC,∴△DEF∽△CEB,又∵△ABF∽△CEB∴△ABF∽△DEF,∵AF=3DF,△DEF的面積為1,∴S△ABF=9,∵AD=BC=4DF,∴S△CBE=16,∴□ABCD的面積=9+15=24.【點睛】此題考查平行四邊形的性質,相似三角形的判定及性質.23、(1)3;(2);(3)t=;(1)存在,M點的坐標為(2,16)或(-6,16)或【分析】(1)由矩形的性質以及折疊的性質可求得CE、CO的長,在Rt△COE中,由勾股定理可求得OE的長;

(2)設AD=m,在Rt△ADE中,由勾股定理列方程可求得m的值,從而得出D點坐標,結合C、O兩點,利用待定系數法可求得拋物線解析式;

(3)用含t的式子表示出BP、EQ的長,可證明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;(1)由(2)可知C(-1,0),E(0,-3),設N(-2,n),M(m,y),分以下三種情況:①以EN為對角線,根據對角線互相平分,可得CM的中點與EN的中點重合,根據中點坐標公式,可得m的值,根據自變量與函數值的對應關系,可得答案;②當EM為對角線,根據對角線互相平分,可得CN的中點與EM的中點重合,根據中點坐標公式,可得m的值,根據自變量與函數值的對應關系,可得答案;③當CE為對角線,根據對角線互相平分,可得CE的中點與MN的中點重合,根據中點坐標公式,可得m的值,根據自變量與函數值的對應關系,可得答案.【詳解】解:(1)∵OABC為矩形,∴BC=AO=5,CO=AB=1.又由折疊可知,,;(2)設AD=m,則DE=BD=1-m,

∵OE=3,∴AE=5-3=2,在Rt△ADE中,AD2+AE2=DE2,∴m2+22=(1-m)2,∴m=,∴D,∵該拋物線經過C(-1,0)、O(0,0),∴設該拋物線解析式為,把點D代入上式得,∴a=,∴;(3)如圖所示,連接DP、DQ.由題意可得,CP=2t,EQ=t,則BP=5-2t.當DP=DQ時,在Rt△DBP和Rt△DEQ中,,∴Rt△DBP≌Rt△DEQ(HL),∴BP=EQ,∴5-2t=t,∴t=.故當t=時,DP=DQ;(1)∵拋物線的對稱軸為直線x==-2,

∴設N(-2,n),

又由(2)可知C(-1,0),E(0,-3),設M(m,y),

①當EN為對角線,即四邊形ECNM是平行四邊形時,如圖1,

則線段EN的中點橫坐標為=-1,線段CM的中點橫坐標為,

∵EN,CM互相平分,

∴=-1,解得m=2,

又M點在拋物線上,

∴y=×22+×2=16,

∴M(2,16);

②當EM為對角線,即四邊形ECMN是平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論