




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省宿州市第十一中學2025屆九上數學期末監測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.把拋物線y=﹣2x2先向右平移1個單位長度,再向上平移2個單位長度后,所得函數的表達式為()A.y=﹣2(x+1)2+2B.y=﹣2(x+1)2﹣2C.y=﹣2(x﹣1)2+2D.y=﹣2(x﹣1)2﹣22.在平面直角坐標系中,拋物線經過變換后得到拋物線,則這個變換可以是()A.向左平移2個單位 B.向右平移2個單位C.向左平移8個單位 D.向右平移8個單位3.菱形的周長為8cm,高為1cm,則該菱形兩鄰角度數比為()A.3:1 B.4:1 C.5:1 D.6:14.如圖,平行四邊形ABCD中,AC⊥AB,點E為BC邊中點,AD=6,則AE的長為()A.2 B.3 C.4 D.55.若a,b是方程x2+2x-2016=0的兩根,則a2+3a+b=()A.2016 B.2015 C.2014 D.20126.由幾個相同的小正方體搭成的一個幾何體如圖所示,從正面看這個幾何體得到的平面圖形是()A. B. C. D.7.使用家用燃氣灶燒開同一壺水所需的燃氣量(單位:)與旋鈕的旋轉角度(單位:度)()近似滿足函數關系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃氣灶燒開同一壺水的旋鈕角度與燃氣量的三組數據,根據上述函數模型和數據,可推斷出此燃氣灶燒開一壺水最節省燃氣的旋鈕角度約為()A. B. C. D.8.在平面直角坐標系中,正方形,,,,,按如圖所示的方式放置,其中點在軸上,點,,,,,,…在軸上,已知正方形的邊長為1,,,…,則正方形的邊長是()A. B. C. D.9.若反比例函數的圖像經過點,則下列各點在該函數圖像上的為()A. B. C. D.10.如圖,AB是半圓的直徑,O為圓心,C是半圓上的點,D是上的點,若∠D=110°,則∠AOC的度數為()A.130° B.135° C.140° D.145°二、填空題(每小題3分,共24分)11.某服裝店搞促銷活動,將一種原價為56元的襯衣第一次降價后,銷售量仍然不好,又進行第二次降價,兩次降價的百分率相同,現售價為31.5元,設降價的百分率為x,則列出方程是______________.12.因式分解:_______________________.13.如圖是一位同學設計的用手電筒來測量某古城墻高度的示意圖.點P處放一水平的平面鏡,光線從點A出發經平面鏡反射后剛好到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,測得AB=2米,BP=3米,PD=12米,那么該古城墻的高度CD是米.14.如圖,ABCD是平行四邊形,AB是⊙O的直徑,點D在⊙O上,AD=OA=2,則圖中陰影部分的面積為______.15.如圖,已知正六邊形內接于,若正六邊形的邊長為2,則圖中涂色部分的面積為______.16.如圖,在由10個完全相同的正三角形構成的網格圖中,∠α、∠β如圖所示,則sin(α+β)=_____________.17.若二次函數(為常數)的最大值為3,則的值為________.18.如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結論:①abc<0;②>0;③ac-b+1=0;④OA·OB=.其中正確結論的個數是______個.三、解答題(共66分)19.(10分)如圖,分別以△ABC的邊AC和BC為腰向外作等腰直角△DAC和等腰直角△EBC,連接DE.(1)求證:△DAC∽△EBC;(2)求△ABC與△DEC的面積比.20.(6分)如圖一座拱橋的示意圖,已知橋洞的拱形是拋物線.當水面寬為12m時,橋洞頂部離水面4m.、(1)建立平面直角坐標系,并求該拋物線的函數表達式;(2)若水面上升1m,水面寬度將減少多少?21.(6分)學校實施新課程改革以來,學生的學習能力有了很大提高.王老師為進一步了解本班學生自主學習、合作交流的現狀,對該班部分學生進行調查,把調查結果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調查結果繪制成兩幅不完整的統計圖(如圖1,2).請根據統計圖解答下列問題:(1)本次調查中,王老師一共調查了名學生;(2)將條形統計圖補充完整;(3)為了共同進步,王老師從被調查的A類和D類學生中分別選取一名學生進行“兵教兵”互助學習,請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.22.(8分)如圖,拋物線y=ax2+2x+c經過點A(0,3),B(﹣1,0),請解答下列問題:(1)求拋物線的解析式;(2)拋物線的頂點為點D,對稱軸與x軸交于點E,連接BD,求BD的長;(3)點F在拋物線上運動,是否存在點F,使△BFC的面積為6,如果存在,求出點F的坐標;如果不存在,請說明理由.23.(8分)如圖,中,點在邊上,,將線段繞點旋轉到的位置,使得,連接,與交于點(1)求證:;(2)若,,求的度數.24.(8分)“萬州古紅桔”原名“萬縣紅桔”,古稱丹桔(以下簡稱為紅桔),種植距今至少已有一千多年的歷史,“玫瑰香橙”(源自意大利西西里島塔羅科血橙,以下簡稱香橙)現已是萬州柑橘發展的主推品種之一.某水果店老板在2017年11月份用15200元購進了400千克紅桔和600千克香橙,已知香橙的每千克進價比紅桔的每千克進價2倍還多4元.(1)求11月份這兩種水果的進價分別為每千克多少元?(2)時下正值柑橘銷售旺季,水果店老板決定在12月份繼續購進這兩種水果,但進入12月份,由于柑橘的大量上市,紅桔和香橙的進價都有大幅下滑,紅桔每千克的進價在11月份的基礎上下降了%,香橙每千克的進價在11月份的基礎上下降了%,由于紅桔和“玫瑰香橙”都深受庫區人民歡迎,實際水果店老板在12月份購進的紅桔數量比11月份增加了%,香橙購進的數量比11月份增加了2%,結果12月份所購進的這兩種柑橘的總價與11月份所購進的這兩種柑橘的總價相同,求的值.25.(10分)《九章算術》是中國傳統數學最重要的著作,在“勾股”章中有這樣一個問題:“今有邑方二百步,各中開門,出東門十五步有木,問:出南門幾步面見木?”用今天的話說,大意是:如圖,DEFG是一座邊長為200步(“步”是古代的長度單位)的正方形小城,東門H位于GD的中點,南門K位于ED的中點,出東門15步的A處有一樹木,求出南門多少步恰好看到位于A處的樹木(即點D在直線AC上)?請你計算KC的長為多少步.26.(10分)在下列的網格中,橫、縱坐標均為整數的點叫做格點,例如正方形的頂點,都是格點.要求在下列問題中僅用無刻度的直尺作圖.
(1)畫出格點,連(或延長)交邊于,使,寫出點的坐標.(2)畫出格點,連(或延長)交邊于,使,則滿足條件的格點有個.
參考答案一、選擇題(每小題3分,共30分)1、C【詳解】解:把拋物線y=﹣2x2先向右平移1個單位長度,再向上平移2個單位長度后,所得函數的表達式為y=﹣2(x﹣1)2+2,故選C.2、B【分析】根據變換前后的兩拋物線的頂點坐標找變換規律.【詳解】y=(x+5)(x-3)=(x+1)2-16,頂點坐標是(-1,-16).y=(x+3)(x-5)=(x-1)2-16,頂點坐標是(1,-16).所以將拋物線y=(x+5)(x-3)向右平移2個單位長度得到拋物線y=(x+3)(x-5),故選B.【點睛】此題主要考查了次函數圖象與幾何變換,要求熟練掌握平移的規律:左加右減,上加下減.3、C【分析】菱形的性質;含30度角的直角三角形的性質.【詳解】如圖所示,根據已知可得到菱形的邊長為2cm,從而可得到高所對的角為30°,相鄰的角為150°,則該菱形兩鄰角度數比為5:1,故選C.4、B【解析】由平行四邊形得AD=BC,在Rt△BAC中,點E為BC邊中點,根據直角三角形的中線等于斜邊的一半即可求出AE.解:∵四邊形ABCD是平行四邊形,∴AD=BC=6,∵AC⊥AB,∴△BAC為Rt△BAC,∵點E為BC邊中點,∴AE=BC=.故選B.5、C【分析】先根據一元二次方程的解的定義得到a2+2a-2016=0,即a2+2a=2016,則a2+3a+b化簡為2016+a+b,再根據根與系數的關系得到a+b=-2,然后利用整體代入的方法計算即可.【詳解】∵a是方程x2+2x-2016=0的實數根,
∴a2+2a-2016=0,
∴a2=-2a+2016,
∴a2+3a+b=-2a+2016+3a+b=a+b+2016,
∵a、b是方程x2+2x-2016=0的兩個實數根,
∴a+b=-2,
∴a2+3a+b=-2+2016=1.
故選:C.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數的關系:若方程兩個為x1,x2,則x1+x2=-,x1?x2=.也考查了一元二次方程的解.6、A【解析】根據題意,由題目的結構特點,依據題目的已知條件,正視圖是有兩行,第一行兩個,第二行三個且右對齊,從而得出答案.即可得到題目的結論.【詳解】從正面看到的平面圖形是:,故選A.【點睛】此題主要考查的是簡單的組合體的三視圖等有關知識,題目比較簡單,通過考查,了解學生對簡單的組合體的三視圖等知識的掌握程度.熟練掌握簡單的組合體的三視圖是解決本題的關鍵.7、C【解析】根據已知三點和近似滿足函數關系y=ax2+bx+c(a≠0)可以大致畫出函數圖像,并判斷對稱軸位置在36和54之間即可選擇答案.【詳解】解:由圖表數據描點連線,補全圖像可得如圖,拋物線對稱軸在36和54之間,約為41℃∴旋鈕的旋轉角度在36°和54°之間,約為41℃時,燃氣灶燒開一壺水最節省燃氣.故選:C,【點睛】本題考查了二次函數的應用,二次函數的圖像性質,熟練掌握二次函數圖像對稱性質,判斷對稱軸位置是解題關鍵.綜合性較強,需要有較高的思維能力,用圖象法解題是本題考查的重點.8、D【分析】利用正方形的性質結合銳角三角函數關系得出正方形邊長,進而即可找到規律得出答案.【詳解】∵正方形的邊長為1,,,…同理可得故正方形的邊長為故選:D.【點睛】本題主要考查正方形的性質和銳角三角函數,利用正方形的性質和銳角三角函數找出規律是解題的關鍵.9、C【分析】將點代入求出反比例函數的解析式,再對各項進行判斷即可.【詳解】將點代入得解得∴只有點在該函數圖象上故答案為:C.【點睛】本題考查了反比例函數的問題,掌握反比例函數的性質以及應用是解題的關鍵.10、C【分析】根據“圓內接四邊形的對角互補”,由∠D可以求得∠B,再由圓周角定理可以求得∠AOC的度數.【詳解】解:∵∠D=110°,∴∠B=180°﹣110°=70°,∴∠AOC=2∠B=140°,故選C.【點睛】本題考查圓周角定理及圓內接四邊形的性質,熟練掌握有關定理和性質的應用是解題關鍵.二、填空題(每小題3分,共24分)11、=31.1【分析】根據題意,第一次降價后的售價為,第二次降價后的售價為,據此列方程得解.【詳解】根據題意,得:=31.1故答案為:=31.1.【點睛】本題考查一元二次方程的應用,關鍵是理解第二次降價是以第一次降價后的售價為單位“1”的.12、【分析】先提公因式,再用平方差公式分解.【詳解】解:【點睛】本題考查因式分解,掌握因式分解方法是關鍵.13、1.【解析】試題分析:根據題目中的條件易證△ABP∽△CDP,由相似三角形對應邊的比相等可得,即,解得CD=1m.考點:相似三角形的應用.14、【分析】根據題意,作出合適的輔助線,由圖可知,陰影部分的面積=△CBF的面積,根據題目的條件和圖形,可以求得△BCF的面積,從而可以解答本題.【詳解】連接OD、OF、BF,作DE⊥OA于點E,∵ABCD是平行四邊形,AB是⊙O的直徑,點D在⊙O上,AD=OA=2,∴OA=OD=AD=OF=OB=2,DC∥AB,∴△DOA是等邊三角形,∠AOD=∠FDO,∴∠AOD=∠FDO=60°,同理可得,∠FOB=60°,△BCD是等邊三角形,∵弓形DF的面積=弓形FB的面積,DE=OD?sin60°=,∴圖中陰影部分的面積為:=,故答案為:.【點睛】本題考查了求陰影部分面積的問題,掌握三角形面積公式是解題的關鍵.15、【分析】根據圓的性質和正六邊形的性質證明△CDA≌△BDO,得出涂色部分即為扇形AOB的面積,根據扇形面積公式求解.【詳解】解:連接OA,OB,OC,AB,OA與BC交于D點∵正六邊形內接于,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴圖中涂色部分的面積等于扇形AOB的面積為:.故答案為:.【點睛】本題考查圓的內接正多邊形的性質,根據圓的性質結合正六邊形的性質將涂色部分轉化成扇形面積是解答此題的關鍵.16、【分析】連接DE,利用等腰三角形的性質及三角形內角和定理可得出∠α=30°,同理可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°結合∠AED=∠AEC+∠CED可得出∠AED=90°,設等邊三角形的邊長為a,則AE=2a,DE=a,利用勾股定理可得出AD的長,由三角函數定義即可得出答案.【詳解】解:連接DE,如圖所示:
在△ABC中,∠ABC=120°,BA=BC,
∴∠α=30°,
同理得:∠CDE=∠CED=30°=∠α.
又∵∠AEC=60°,
∴∠AED=∠AEC+∠CED=90°.
設等邊三角形的邊長為a,則AE=2a,DE=2×sin60°?a=a,
∴AD=a,
∴sin(α+β)==.
故答案為:.【點睛】此題考查解直角三角形、等邊三角形的性質以及圖形的變化規律,構造出含一個銳角等于∠α+∠β的直角三角形是解題的關鍵.17、-1【分析】根據二次函數的最大值公式列出方程計算即可得解.【詳解】由題意得,,
整理得,,
解得:,
∵二次函數有最大值,
∴,
∴.
故答案為:.【點睛】本題考查了二次函數的最值,易錯點在于要考慮a的正負情況.18、1【分析】由拋物線開口方向得a<0,由拋物線的對稱軸位置可得b>0,由拋物線與y軸的交點位置可得c>0,則可對①進行判斷;根據拋物線與x軸的交點個數得到b2?4ac>0,加上a<0,則可對②進行判斷;利用OA=OC可得到A(?c,0),再把A(?c,0)代入y=ax2+bx+c得ac2?bc+c=0,兩邊除以c則可對③進行判斷;設A(x1,0),B(x2,0),則OA=?x1,OB=x2,根據拋物線與x軸的交點問題得到x1和x2是方程ax2+bx+c=0(a≠0)的兩根,利用根與系數的關系得到x1?x2=,于是OA?OB=,則可對④進行判斷.【詳解】解:∵拋物線開口向下,∴a<0,∵拋物線的對稱軸在y軸的右側,∴b>0,∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以①正確;∵拋物線與x軸有2個交點,∴△=b2?4ac>0,而a<0,∴<0,所以②錯誤;∵C(0,c),OA=OC,∴A(?c,0),把A(?c,0)代入y=ax2+bx+c得ac2?bc+c=0,∴ac?b+1=0,所以③正確;設A(x1,0),B(x2,0),∵二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,∴x1和x2是方程ax2+bx+c=0(a≠0)的兩根,∴x1?x2=,∴OA?OB=,所以④正確.故答案為:1.
【點睛】本題考查了二次函數圖象與系數的關系:對于二次函數y=ax2+bx+c(a≠0),二次項系數a決定拋物線的開口方向和大小:當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右.(簡稱:左同右異);常數項c決定拋物線與y軸交點:拋物線與y軸交于(0,c);拋物線與x軸交點個數由△決定:△=b2?4ac>0時,拋物線與x軸有2個交點;△=b2?4ac=0時,拋物線與x軸有1個交點;△=b2?4ac<0時,拋物線與x軸沒有交點.三、解答題(共66分)19、(1)見解析;(2)【分析】(1)利用等腰直角三角形的性質證明△DAC∽△EBC;(2)依據△DAC∽△EBC所得條件,證明△ABC與△DEC相似,通過面積比等于相似比的平方得到結果.【詳解】(1)證明:∵△EBC是等腰直角三角形∴BC=BE,∠EBC=90°∴∠BEC=∠BCE=45°.同理∠DAC=90°,∠ADC=∠ACD=45°∴∠EBC=∠DAC=90°,∠BCE=∠ACD=45°.∴△DAC∽△EBC.(2)解:∵在Rt△ACD中,AC2+AD2=CD2,∴2AC2=CD2∴,∵△DAC∽△EBC∴=,∴=,∵∠BCE=∠ACD∴∠BCE-∠ACE=∠ACD-∠ACE,即∠BCA=∠ECD,∵在△DEC和△ABC中,=,∠BCA=∠ECD,∴△DEC∽△ABC,∴S△ABC:S△DEC==.【點睛】本題考查了相似三角形的判定和性質,以及相似三角形的面積比等于相似比的平方,解題的關鍵在于利用(1)中的相似推導出第二對相似三角形.20、(1)圖見解析,拋物線的函數表達式為(注:因建立的平面直角坐標系的不同而不同);(2)【分析】(1)以AB的中點為平面直角坐標系的原點O,AB所在線為x軸,過點O作AB的垂線為y軸建立平面直角坐標系(圖見解析);因此,拋物線的頂點坐標為,可設拋物線的函數表達式為,再將B點的坐標代入即可求解;(2)根據題(1)的結果,令求出x的兩個值,從而可得水面上升1m后的水面寬度,再與12m作差即可得出答案.【詳解】(1)以AB的中點為平面直角坐標系的原點O,AB所在線為x軸,過點O作AB的垂線為y軸,建立的平面直角坐標系如下:根據所建立的平面直角坐標系可知,B點的坐標為,拋物線的頂點坐標為因此設拋物線的函數表達式為將代入得:解得:則所求的拋物線的函數表達式為(注:因建立的平面直角坐標系的不同而不同);(2)由題意,令得解得:則水面上升1m后的水面寬度為:(米)故水面上升1m,水面寬度將減少米.【點睛】本題考查了二次函數圖象的性質,根據建立的平面直角坐標系求出函數的表達式是解題關鍵.21、(1)20;(2)作圖見試題解析;(3).【分析】(1)由A類的學生數以及所占的百分比即可求得答案;(2)先求出C類的女生數、D類的男生數,繼而可補全條形統計圖;(3)首先根據題意列出表格,再利用表格求得所有等可能的結果與恰好選中一名男生和一名女生的情況,繼而求得答案.【詳解】(1)根據題意得:王老師一共調查學生:(2+1)÷15%=20(名);故答案為20;(2)∵C類女生:20×25%﹣2=3(名);D類男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如圖:(3)列表如下:A類中的兩名男生分別記為A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6種等可能的結果,其中,一男一女的有3種,所以所選兩位同學恰好是一位男生和一位女生的概率為:.22、(1)y=﹣x2+2x+3;(2)2;(3)存在,理由見解析.【分析】(1)拋物線y=ax2+2x+c經過點A(0,3),B(-1,0),則c=3,將點B的坐標代入拋物線表達式并解得:b=2,即可求解;
(2)函數的對稱軸為:x=1,則點D(1,4),則BE=2,DE=4,即可求解;
(3)△BFC的面積=×BC×|yF|=2|yF|=6,解得:yF=±3,即可求解.【詳解】解:(1)拋物線y=ax2+2x+c經過點A(0,3),B(﹣1,0),則c=3,將點B的坐標代入拋物線表達式并解得:b=2,故拋物線的表達式為:y=﹣x2+2x+3;(2)函數的對稱軸為:x=1,則點D(1,4),則BE=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保健醫療服務合同3篇
- 戶口借用全攻略委托書篇3篇
- 委托開發協議合同范本3篇
- 合同中的停薪留職規定3篇
- 協議供貨與定點采購3篇
- 官方授權委托樣式3篇
- 四方合伙合作協議書3篇
- 住宅用途變更聲明書3篇
- 線上線下服飾銷售模式比較考核試卷
- 玻璃背景墻設計考核試卷
- 交通運輸的節能與環保措施
- 游艇會服務流程
- 高壓帶電顯示器說明書全解
- 數據中心基礎設施管理系統DCIM技術方案
- 企業網絡安全與數據保護策略
- 2024屆高考英語語法填空專項課件
- 小水滴的訴說省公開課一等獎新名師優質課比賽一等獎課件
- 第五課滴答滴答下雨了課件
- 新教師崗前培訓講座中小學教學常規PPT
- 李子奈《計量經濟學》(第5版)筆記和典型題(含考研真題)詳解
- 現澆梁鋼管柱+貝雷片支架驗收表
評論
0/150
提交評論