




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖北省武漢市武昌區C組聯盟中考聯考數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知xa=2,xb=3,則x3a﹣2b等于()A. B.﹣1 C.17 D.722.如圖,釣魚竿AC長6m,露在水面上的魚線BC長m,某釣者想看看魚釣上的情況,把魚竿AC轉動到AC'的位置,此時露在水面上的魚線B′C′為m,則魚竿轉過的角度是()A.60° B.45° C.15° D.90°3.等式成立的x的取值范圍在數軸上可表示為(
)A. B. C. D.4.二次函數y=x2+bx–1的圖象如圖,對稱軸為直線x=1,若關于x的一元二次方程x2–2x–1–t=0(t為實數)在–1<x<4的范圍內有實數解,則t的取值范圍是A.t≥–2 B.–2≤t<7C.–2≤t<2 D.2<t<75.如圖,在圓O中,直徑AB平分弦CD于點E,且CD=4,連接AC,OD,若∠A與∠DOB互余,則EB的長是()A.2 B.4 C. D.26.如圖,該圖形經過折疊可以圍成一個正方體,折好以后與“靜”字相對的字是()A.著 B.沉 C.應 D.冷7.如圖,在正方形網格中建立平面直角坐標系,若A0,2,BA.1,-2 B.1,-1 C.2,-1 D.2,18.下列運算正確的是()A.a6÷a3=a2 B.3a2?2a=6a3 C.(3a)2=3a2 D.2x2﹣x2=19.如圖,AB∥CD,那么()A.∠BAD與∠B互補 B.∠1=∠2 C.∠BAD與∠D互補 D.∠BCD與∠D互補10.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,二、填空題(共7小題,每小題3分,滿分21分)11.因式分解:_________________.12.已知線段a=4,線段b=9,則a,b的比例中項是_____.13.已知:如圖,△ABC內接于⊙O,且半徑OC⊥AB,點D在半徑OB的延長線上,且∠A=∠BCD=30°,AC=2,則由,線段CD和線段BD所圍成圖形的陰影部分的面積為__.14.為慶?!傲弧眱和潱秤變簣@舉行用火柴棒擺“金魚”比賽.如圖所示,按照這樣的規律,擺第n個圖,需用火柴棒的根數為_______________.15.因式分解:a2﹣a=_____.16.計算:﹣22÷(﹣)=_____.17.北京奧運會國家體育場“鳥巢”的建筑面積為258000平方米,那么258000用科學記數法可表示為.三、解答題(共7小題,滿分69分)18.(10分)在數學上,我們把符合一定條件的動點所形成的圖形叫做滿足該條件的點的軌跡.例如:動點P的坐標滿足(m,m﹣1),所有符合該條件的點組成的圖象在平面直角坐標系xOy中就是一次函數y=x﹣1的圖象.即點P的軌跡就是直線y=x﹣1.(1)若m、n滿足等式mn﹣m=6,則(m,n﹣1)在平面直角坐標系xOy中的軌跡是;(2)若點P(x,y)到點A(0,1)的距離與到直線y=﹣1的距離相等,求點P的軌跡;(3)若拋物線y=上有兩動點M、N滿足MN=a(a為常數,且a≥4),設線段MN的中點為Q,求點Q到x軸的最短距離.19.(5分)(1)計算:(﹣2)﹣2+cos60°﹣(﹣2)0;(2)化簡:(a﹣)÷.20.(8分)如圖,在△ABC中,∠BAC=90°,AB=AC,D為AB邊上一點,連接CD,過點A作AE⊥CD于點E,且交BC于點F,AG平分∠BAC交CD于點G.求證:BF=AG.21.(10分)計算:2tan45°-(-)o-22.(10分)已知2是關于x的方程x2﹣2mx+3m=0的一個根,且這個方程的兩個根恰好是等腰△ABC的兩條邊長,則△ABC的周長為_____.23.(12分)計算:(1-n)0-|3-2|+(-)-1+4cos30°.24.(14分)如圖,二次函數的圖像與軸交于、兩點,與軸交于點,.點在函數圖像上,軸,且,直線是拋物線的對稱軸,是拋物線的頂點.求、的值;如圖①,連接,線段上的點關于直線的對稱點恰好在線段上,求點的坐標;如圖②,動點在線段上,過點作軸的垂線分別與交于點,與拋物線交于點.試問:拋物線上是否存在點,使得與的面積相等,且線段的長度最小?如果存在,求出點的坐標;如果不存在,說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】∵xa=2,xb=3,∴x3a?2b=(xa)3÷(xb)2=8÷9=,故選A.2、C【解析】試題解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,魚竿轉過的角度是15°.故選C.考點:解直角三角形的應用.3、B【解析】
根據二次根式有意義的條件即可求出的范圍.【詳解】由題意可知:,解得:,故選:.【點睛】考查二次根式的意義,解題的關鍵是熟練運用二次根式有意義的條件.4、B【解析】
利用對稱性方程求出b得到拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),再計算當﹣1<x<4時對應的函數值的范圍為﹣2≤y<7,由于關于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數)在﹣1<x<4的范圍內有實數解可看作二次函數y=x2﹣2x﹣1與直線y=t有交點,然后利用函數圖象可得到t的范圍.【詳解】拋物線的對稱軸為直線x=﹣=1,解得b=﹣2,∴拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),當x=﹣1時,y=x2﹣2x﹣1=2;當x=4時,y=x2﹣2x﹣1=7,當﹣1<x<4時,﹣2≤y<7,而關于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數)在﹣1<x<4的范圍內有實數解可看作二次函數y=x2﹣2x﹣1與直線y=t有交點,∴﹣2≤t<7,故選B.【點睛】本題考查了二次函數的性質、拋物線與x軸的交點、二次函數與一元二次方程,把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程是解題的關鍵.5、D【解析】
連接CO,由直徑AB平分弦CD及垂徑定理知∠COB=∠DOB,則∠A與∠COB互余,由圓周角定理知∠A=30°,∠COE=60°,則∠OCE=30°,設OE=x,則CO=2x,利用勾股定理即可求出x,再求出BE即可.【詳解】連接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=2∵∠A與∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,設OE=x,則CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故選D.【點睛】此題主要考查圓內的綜合問題,解題的關鍵是熟知垂徑定理、圓周角定理及勾股定理.6、A【解析】
正方體的平面展開圖中,相對面的特點是中間必須間隔一個正方形,據此作答【詳解】這是一個正方體的平面展開圖,共有六個面,其中面“沉”與面“考”相對,面“著”與面“靜”相對,“冷”與面“應”相對.故選:A【點睛】本題主要考查了利用正方體及其表面展開圖的特點解題,明確正方體的展開圖的特征是解決此題的關鍵7、C【解析】
根據A點坐標即可建立平面直角坐標.【詳解】解:由A(0,2),B(1,1)可知原點的位置,
建立平面直角坐標系,如圖,
∴C(2,-1)
故選:C.【點睛】本題考查平面直角坐標系,解題的關鍵是建立直角坐標系,本題屬于基礎題型.8、B【解析】
A、根據同底數冪的除法法則計算;
B、根據同底數冪的乘法法則計算;
C、根據積的乘方法則進行計算;
D、根據合并同類項法則進行計算.【詳解】解:A、a6÷a3=a3,故原題錯誤;B、3a2?2a=6a3,故原題正確;C、(3a)2=9a2,故原題錯誤;D、2x2﹣x2=x2,故原題錯誤;故選B.【點睛】考查同底數冪的除法,合并同類項,同底數冪的乘法,積的乘方,熟記它們的運算法則是解題的關鍵.9、C【解析】
分清截線和被截線,根據平行線的性質進行解答即可.【詳解】解:∵AB∥CD,∴∠BAD與∠D互補,即C選項符合題意;當AD∥BC時,∠BAD與∠B互補,∠1=∠2,∠BCD與∠D互補,故選項A、B、D都不合題意,故選:C.【點睛】本題考查了平行線的性質,熟記性質并準確識圖是解題的關鍵.10、A【解析】
首先根據題意畫出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.【點睛】本題考查了正多邊形和圓的知識;求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
提公因式法和應用公式法因式分解.【詳解】解:.故答案為:【點睛】本題考查因式分解,要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續分解因式.12、6【解析】
根據已知線段a=4,b=9,設線段x是a,b的比例中項,列出等式,利用兩內項之積等于兩外項之積即可得出答案.【詳解】解:∵a=4,b=9,設線段x是a,b的比例中項,∴,∴x2=ab=4×9=36,∴x=6,x=﹣6(舍去).故答案為6【點睛】本題主要考查比例線段問題,解題關鍵是利用兩內項之積等于兩外項之積解答.13、2﹣π.【解析】試題分析:根據題意可得:∠O=2∠A=60°,則△OBC為等邊三角形,根據∠BCD=30°可得:∠OCD=90°,OC=AC=2,則CD=,,則.14、6n+1.【解析】尋找規律:不難發現,后一個圖形比前一個圖形多6根火柴棒,即:第1個圖形有8根火柴棒,第1個圖形有14=6×1+8根火柴棒,第3個圖形有10=6×1+8根火柴棒,……,第n個圖形有6n+1根火柴棒.15、a(a﹣1)【解析】
直接提取公因式a,進而分解因式得出答案【詳解】a2﹣a=a(a﹣1).故答案為a(a﹣1).【點睛】此題考查公因式,難度不大16、1【解析】解:原式==1.故答案為1.17、2.58×1【解析】科學記數法就是將一個數字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數.即從左邊第一位開始,在首位非零的后面加上小數點,再乘以10的n次冪.258000=2.58×1.三、解答題(共7小題,滿分69分)18、(1);(2)y=x2;(3)點Q到x軸的最短距離為1.【解析】
(1)先判斷出m(n﹣1)=6,進而得出結論;(2)先求出點P到點A的距離和點P到直線y=﹣1的距離建立方程即可得出結論;(3)設出點M,N的坐標,進而得出點Q的坐標,利用MN=a,得出,即可得出結論.【詳解】(1)設m=x,n﹣1=y,∵mn﹣m=6,∴m(n﹣1)=6,∴xy=6,∴∴(m,n﹣1)在平面直角坐標系xOy中的軌跡是故答案為:;(2)∴點P(x,y)到點A(0,1),∴點P(x,y)到點A(0,1)的距離的平方為x2+(y﹣1)2,∵點P(x,y)到直線y=﹣1的距離的平方為(y+1)2,∵點P(x,y)到點A(0,1)的距離與到直線y=﹣1的距離相等,∴x2+(y﹣1)2=(y+1)2,∴(3)設直線MN的解析式為y=kx+b,M(x1,y1),N(x2,y2),∴線段MN的中點為Q的縱坐標為∴∴x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,∴∴∴∴點Q到x軸的最短距離為1.【點睛】此題是二次函數綜合題,主要考查了點的軌跡的定義,兩點間的距離公式,中點坐標公式公式,根與系數的關系,確定出是解本題的關鍵.19、(1);(2);【解析】
(1)根據負整數指數冪、特殊角的三角函數值、零指數冪可以解答本題;(2)根據分式的減法和除法可以解答本題.【詳解】解:(1)原式(2)原式【點睛】本題考查分式的混合運算、實數的運算、負整數指數冪、特殊角的三角函數值、零指數冪,解答本題的關鍵是明確它們各自的計算方法.20、見解析【解析】
根據角平分線的性質和直角三角形性質求∠BAF=∠ACG.進一步證明△ABF≌△CAG,從而證明BF=AG.【詳解】證明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG+∠ADE=90°,∴∠BAF=∠ACG.又∵AB=CA,∴∴△ABF≌△CAG(ASA),∴BF=AG【點睛】此題重點考查學生對三角形全等證明的理解,熟練掌握兩三角形全等的證明是解題的關鍵.21、2-【解析】
先求三角函數,再根據實數混合運算法計算.【詳解】解:原式=2×1-1-=1+1-=2-【點睛】此題重點考察學生對三角函數值的應用,掌握特殊角的三角函數值是解題的關鍵.22、11【解析】
將x=2代入方程找出關于m的一元一次方程,解一元一次方程即可得出m
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北機電職業技術學院《數學文化選講》2023-2024學年第二學期期末試卷
- 2025年江蘇省建陵高級中學高三2月教學質量檢測試題生物試題試卷含解析
- 中國人民大學《高級網站開發技術》2023-2024學年第二學期期末試卷
- 貴陽康養職業大學《城市給水排水管網工程及設計》2023-2024學年第一學期期末試卷
- 江蘇省揚州市寶應縣2024-2025學年初三下學期第二次質量檢測試題化學試題試卷含解析
- 商丘職業技術學院《綠色能源利用技術》2023-2024學年第一學期期末試卷
- 重慶工貿職業技術學院《燃燒設備與能源轉化》2023-2024學年第二學期期末試卷
- 大連藝術學院《文獻檢索與科技論文寫作》2023-2024學年第一學期期末試卷
- 重慶工商職業學院《攝影攝像》2023-2024學年第一學期期末試卷
- 合肥共達職業技術學院《美國文學概論及作品選讀》2023-2024學年第二學期期末試卷
- 賣石斛怎么給顧客說:石斛賣的方法
- 門靜脈高壓癥
- 萬能GhostXP恢復盤制作教程
- 國家電網有限公司電網數字化項目工作量度量規范應用指南(2020版)
- (完整版)小學六年級人教版音樂總復習及知識點
- GB/T 6609.1-2004氧化鋁化學分析方法和物理性能測定方法重量法測定水分
- GB/T 6075.3-2011機械振動在非旋轉部件上測量評價機器的振動第3部分:額定功率大于15 kW額定轉速在120 r/min至15 000 r/min之間的在現場測量的工業機器
- GB/T 24611-2020滾動軸承損傷和失效術語、特征及原因
- GB 9687-1988食品包裝用聚乙烯成型品衛生標準
- 三年級下冊美術課件第9課-玩玩水粉畫|滬教版-1
- 與孩子一起成長(家庭教育課件)
評論
0/150
提交評論