2023-2024學年江蘇省揚州市江都區城區重點名校中考適應性考試數學試題含解析_第1頁
2023-2024學年江蘇省揚州市江都區城區重點名校中考適應性考試數學試題含解析_第2頁
2023-2024學年江蘇省揚州市江都區城區重點名校中考適應性考試數學試題含解析_第3頁
2023-2024學年江蘇省揚州市江都區城區重點名校中考適應性考試數學試題含解析_第4頁
2023-2024學年江蘇省揚州市江都區城區重點名校中考適應性考試數學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年江蘇省揚州市江都區城區重點名校中考適應性考試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.某種商品的進價為800元,出售時標價為1200元,后來由于該商品積壓,商店準備打折銷售,但要保證利潤率不低于5%,則至多可打()A.6折 B.7折C.8折 D.9折2.一組數據:6,3,4,5,7的平均數和中位數分別是()A.5,5 B.5,6 C.6,5 D.6,63.如圖:A、B、C、D四點在一條直線上,若AB=CD,下列各式表示線段AC錯誤的是()A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB4.函數中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣25.點A、C為半徑是4的圓周上兩點,點B為的中點,以線段BA、BC為鄰邊作菱形ABCD,頂點D恰在該圓半徑的中點上,則該菱形的邊長為()A.或2 B.或2 C.2或2 D.2或26.關于?ABCD的敘述,不正確的是()A.若AB⊥BC,則?ABCD是矩形B.若AC⊥BD,則?ABCD是正方形C.若AC=BD,則?ABCD是矩形D.若AB=AD,則?ABCD是菱形7.九年級學生去距學校10km的博物館參觀,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發,結果他們同時到達.已知汽車的速度是騎車學生速度的2倍,求騎車學生的速度.設騎車學生的速度為xkm/h,則所列方程正確的是()A. B.C. D.8.如圖所示,直線a∥b,∠1=35°,∠2=90°,則∠3的度數為()A.125° B.135° C.145° D.155°9.不等式組的解集是()A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤410.如圖,任意轉動正六邊形轉盤一次,當轉盤停止轉動時,指針指向大于3的數的概率是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直線y1=mx經過P(2,1)和Q(-4,-2)兩點,且與直線y2=kx+b交于點P,則不等式kx+b>mx>-2的解集為_________________.12.某種商品因換季準備打折出售,如果按定價的七五折出售將賠25元,而按定價的九折出售將賺20元,則商品的定價是______元13.分式有意義時,x的取值范圍是_____.14.用配方法將方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n為常數),則m+n=_____.15.如圖,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分線MN交AC于點D,則∠DBC的度數是____________.16.若x,y為實數,y=,則4y﹣3x的平方根是____.三、解答題(共8題,共72分)17.(8分)某商場計劃購進A,B兩種新型節能臺燈共100盞,A型燈每盞進價為30元,售價為45元;B型臺燈每盞進價為50元,售價為70元.(1)若商場預計進貨款為3500元,求A型、B型節能燈各購進多少盞?根據題意,先填寫下表,再完成本問解答:型號A型B型購進數量(盞)x_____購買費用(元)__________(2)若商場規定B型臺燈的進貨數量不超過A型臺燈數量的3倍,應怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?18.(8分)已知P是⊙O外一點,PO交⊙O于點C,OC=CP=2,弦AB⊥OC,∠AOC的度數為60°,連接PB.求BC的長;求證:PB是⊙O的切線.19.(8分)某商場要經營一種新上市的文具,進價為20元,試營銷階段發現:當銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數關系式;求銷售單價為多少元時,該文具每天的銷售利潤最大;商場的營銷部結合上述情況,提出了A、B兩種營銷方案方案A:該文具的銷售單價高于進價且不超過30元;方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元請比較哪種方案的最大利潤更高,并說明理由20.(8分)如圖,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圓規作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數.21.(8分)有這樣一個問題:探究函數的圖象與性質.小懷根據學習函數的經驗,對函數的圖象與性質進行了探究.下面是小懷的探究過程,請補充完成:(1)函數的自變量x的取值范圍是;(2)列出y與x的幾組對應值.請直接寫出m的值,m=;(3)請在平面直角坐標系xOy中,描出表中各對對應值為坐標的點,并畫出該函數的圖象;(4)結合函數的圖象,寫出函數的一條性質.22.(10分)已知:如圖,AB為⊙O的直徑,C,D是⊙O直徑AB異側的兩點,AC=DC,過點C與⊙O相切的直線CF交弦DB的延長線于點E.(1)試判斷直線DE與CF的位置關系,并說明理由;(2)若∠A=30°,AB=4,求的長.23.(12分)如圖,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的長.24.某地一路段修建,甲隊單獨完成這項工程需要60天,若由甲隊先做5天,再由甲、乙兩隊合作9天,共完成這項工程的三分之一.(1)求甲、乙兩隊合作完成這項工程需要多少天?(2)若甲隊的工作效率提高20%,乙隊工作效率提高50%,甲隊施工1天需付工程款4萬元,乙隊施工一天需付工程款2.5萬元,現由甲乙兩隊合作若干天后,再由乙隊完成剩余部分,在完成此項工程的工程款不超過190萬元的條件下要求盡早完成此項工程,則甲、乙兩隊至多要合作多少天?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

設可打x折,則有1200×-800≥800×5%,解得x≥1.即最多打1折.故選B.【點睛】本題考查的是一元一次不等式的應用,解此類題目時注意利潤和折數,計算折數時注意要除以2.解答本題的關鍵是讀懂題意,求出打折之后的利潤,根據利潤率不低于5%,列不等式求解.2、A【解析】試題分析:根據平均數的定義列式計算,再根據找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數解答.平均數為:×(6+3+4+1+7)=1,按照從小到大的順序排列為:3,4,1,6,7,所以,中位數為:1.故選A.考點:中位數;算術平均數.3、C【解析】

根據線段上的等量關系逐一判斷即可.【詳解】A、∵AD-CD=AC,∴此選項表示正確;B、∵AB+BC=AC,∴此選項表示正確;C、∵AB=CD,∴BD-AB=BD-CD,∴此選項表示不正確;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此選項表示正確.故答案選:C.【點睛】本題考查了線段上兩點間的距離及線段的和、差的知識,解題的關鍵是找出各線段間的關系.4、B【解析】要使有意義,所以x+1≥0且x+1≠0,

解得x>-1.

故選B.5、C【解析】

過B作直徑,連接AC交AO于E,如圖①,根據已知條件得到BD=OB=2,如圖②,BD=6,求得OD、OE、DE的長,連接OD,根據勾股定理得到結論.【詳解】過B作直徑,連接AC交AO于E,∵點B為的中點,∴BD⊥AC,如圖①,∵點D恰在該圓直徑上,D為OB的中點,∴BD=×4=2,∴OD=OB-BD=2,∵四邊形ABCD是菱形,∴DE=BD=1,∴OE=1+2=3,連接OC,∵CE=,在Rt△DEC中,由勾股定理得:DC=;如圖②,OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,由勾股定理得:CE=,DC=.故選C.【點睛】本題考查了圓心角,弧,弦的關系,勾股定理,菱形的性質,正確的作出圖形是解題的關鍵.6、B【解析】

由矩形和菱形的判定方法得出A、C、D正確,B不正確;即可得出結論.【詳解】解:A、若AB⊥BC,則是矩形,正確;B、若,則是正方形,不正確;C、若,則是矩形,正確;D、若,則是菱形,正確;故選B.【點睛】本題考查了正方形的判定、矩形的判定、菱形的判定;熟練掌握正方形的判定、矩形的判定、菱形的判定是解題的關鍵.7、C【解析】試題分析:設騎車學生的速度為xkm/h,則汽車的速度為2xkm/h,由題意得,.故選C.考點:由實際問題抽象出分式方程.8、A【解析】分析:如圖求出∠5即可解決問題.詳解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故選:A.點睛:本題考查平行線的性質、三角形內角和定理,鄰補角的性質等知識,解題的關鍵是靈活運用所學知識解決問題.9、D【解析】試題分析:解不等式①可得:x>-1,解不等式②可得:x≤4,則不等式組的解為-1<x≤4,故選D.10、D【解析】分析:根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發生的概率.詳解:∵共6個數,大于3的有3個,∴P(大于3)=.故選D.點睛:本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.二、填空題(本大題共6個小題,每小題3分,共18分)11、-4<x<1【解析】將P(1,1)代入解析式y1=mx,先求出m的值為,將Q點縱坐標y=1代入解析式y=x,求出y1=mx的橫坐標x=-4,即可由圖直接求出不等式kx+b>mx>-1的解集為y1>y1>-1時,x的取值范圍為-4<x<1.

故答案為-4<x<1.

點睛:本題考查了一次函數與一元一次不等式,求出函數圖象的交點坐標及函數與x軸的交點坐標是解題的關鍵.12、300【解析】

設成本為x元,標價為y元,根據已知條件可列二元一次方程組即可解出定價.【詳解】設成本為x元,標價為y元,依題意得,解得故定價為300元.【點睛】此題主要考查二元一次方程組的應用,解題的關鍵是根據題意列出方程再求解.13、x<1【解析】

要使代數式有意義時,必有1﹣x>2,可解得x的范圍.【詳解】根據題意得:1﹣x>2,解得:x<1.故答案為x<1.【點睛】考查了分式和二次根式有意義的條件.二次根式有意義,被開方數為非負數,分式有意義,分母不為2.14、1【解析】

方程常數項移到右邊,兩邊加上25配方得到結果,求出m與n的值即可.【詳解】解:∵x2+10x-11=0,∴x2+10x=11,則x2+10x+25=11+25,即(x+5)2=36,∴m=5、n=36,∴m+n=1,故答案為1.【點睛】此題考查了解一元二次方程-配方法,熟練掌握完全平方公式是解本題的關鍵.15、15°【解析】分析:根據等腰三角形的性質得出∠ABC的度數,根據中垂線的性質得出∠ABD的度數,最后求出∠DBC的度數.詳解:∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=(180°-50°)=65°,∵MN為AB的中垂線,∴∠ABD=∠BAC=50°,∴∠DBC=65°-50°=15°.點睛:本題主要考查的是等腰三角形的性質以及中垂線的性質定理,屬于中等難度的題型.理解中垂線的性質是解決這個問題的關鍵.416、±【解析】∵與同時成立,∴故只有x2﹣4=0,即x=±2,又∵x﹣2≠0,∴x=﹣2,y==﹣,4y﹣3x=﹣1﹣(﹣6)=5,∴4y﹣3x的平方根是±.故答案:±.三、解答題(共8題,共72分)17、(1)30x,y,50y;(2)商場購進A型臺燈2盞,B型臺燈75盞,銷售完這批臺燈時獲利最多,此時利潤為1875元.【解析】

(1)設商場應購進A型臺燈x盞,表示出B型臺燈為y盞,然后根據“A,B兩種新型節能臺燈共100盞”、“進貨款=A型臺燈的進貨款+B型臺燈的進貨款”列出方程組求解即可;(2)設商場銷售完這批臺燈可獲利y元,根據獲利等于兩種臺燈的獲利總和列式整理,再求出x的取值范圍,然后根據一次函數的增減性求出獲利的最大值.【詳解】解:(1)設商場應購進A型臺燈x盞,則B型臺燈為y盞,根據題意得:解得:.答:應購進A型臺燈75盞,B型臺燈2盞.故答案為30x;y;50y;(2)設商場應購進A型臺燈x盞,銷售完這批臺燈可獲利y元,則y=(45﹣30)x+(70﹣50)(100﹣x)=15x+1﹣20x=﹣5x+1,即y=﹣5x+1.∵B型臺燈的進貨數量不超過A型臺燈數量的3倍,∴100﹣x≤3x,∴x≥2.∵k=﹣5<0,y隨x的增大而減小,∴x=2時,y取得最大值,為﹣5×2+1=1875(元).答:商場購進A型臺燈2盞,B型臺燈75盞,銷售完這批臺燈時獲利最多,此時利潤為1875元.【點睛】本題考查了一元一次方程的應用、二元一次方程組的應用以及一次函數的應用,主要利用了一次函數的增減性,(2)題中理清題目數量關系并列式求出x的取值范圍是解題的關鍵.18、(1)BC=2;(2)見解析【解析】試題分析:(1)連接OB,根據已知條件判定△OBC的等邊三角形,則BC=OC=2;(2)欲證明PB是⊙O的切線,只需證得OB⊥PB即可.(1)解:如圖,連接OB.∵AB⊥OC,∠AOC=60°,∴∠OAB=30°,∵OB=OA,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC,∴△OBC的等邊三角形,∴BC=OC.又OC=2,∴BC=2;(2)證明:由(1)知,△OBC的等邊三角形,則∠COB=60°,BC=OC.∵OC=CP,∴BC=PC,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半徑,∴PB是⊙O的切線.考點:切線的判定.19、(1)w=-10x2+700x-10000;(2)即銷售單價為35元時,該文具每天的銷售利潤最大;(3)A方案利潤更高.【解析】

試題分析:(1)根據利潤=(單價-進價)×銷售量,列出函數關系式即可.(2)根據(1)式列出的函數關系式,運用配方法求最大值.(3)分別求出方案A、B中x的取值范圍,然后分別求出A、B方案的最大利潤,然后進行比較.【詳解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴當x=35時,w有最大值2250,即銷售單價為35元時,該文具每天的銷售利潤最大.(3)A方案利潤高,理由如下:A方案中:20<x≤30,函數w=-10(x-35)2+2250隨x的增大而增大,∴當x=30時,w有最大值,此時,最大值為2000元.B方案中:,解得x的取值范圍為:45≤x≤49.∵45≤x≤49時,函數w=-10(x-35)2+2250隨x的增大而減小,∴當x=45時,w有最大值,此時,最大值為1250元.∵2000>1250,∴A方案利潤更高20、(1)作圖見解析(2)∠BDC=72°【解析】解:(1)作圖如下:(2)∵在△ABC中,AB=AC,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°.∵AD是∠ABC的平分線,∴∠ABD=∠ABC=×72°=36°.∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.(1)根據角平分線的作法利用直尺和圓規作出∠ABC的平分線:①以點B為圓心,任意長為半徑畫弧,分別交AB、BC于點E、F;②分別以點E、F為圓心,大于EF為半徑畫圓,兩圓相較于點G,連接BG交AC于點D.(2)先根據等腰三角形的性質及三角形內角和定理求出∠A的度數,再由角平分線的性質得出∠ABD的度數,再根據三角形外角的性質得出∠BDC的度數即可.21、(1)x≠﹣1;(2)2;(2)見解析;(4)在x<﹣1和x>﹣1上均單調遞增;【解析】

(1)根據分母非零即可得出x+1≠0,解之即可得出自變量x的取值范圍;(2)將y=代入函數解析式中求出x值即可;(2)描點、連線畫出函數圖象;(4)觀察函數圖象,寫出函數的一條性質即可.【詳解】解:(1)∵x+1≠0,∴x≠﹣1.故答案為x≠﹣1.(2)當y==時,解得:x=2.故答案為2.(2)描點、連線畫出圖象如圖所示.(4)觀察函數圖象,發現:函數在x<﹣1和x>﹣1上均單調遞增.【點睛】本題考查了反比例函數的性質以及函數圖象,根據給定數據描點、連線畫出函數圖象是解題的關鍵.22、(1)見解析;(2).【解析】

(1)先證明△OAC≌△ODC,得出∠1=∠2,則∠2=∠4,故OC∥DE,即可證得DE⊥CF;(2)根據OA=OC得到∠2=∠3=30°,故∠COD=120°,再根據弧長公式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論