吉林省長春市九臺區師范高中、實驗高中2025屆數學高一下期末質量跟蹤監視模擬試題含解析_第1頁
吉林省長春市九臺區師范高中、實驗高中2025屆數學高一下期末質量跟蹤監視模擬試題含解析_第2頁
吉林省長春市九臺區師范高中、實驗高中2025屆數學高一下期末質量跟蹤監視模擬試題含解析_第3頁
吉林省長春市九臺區師范高中、實驗高中2025屆數學高一下期末質量跟蹤監視模擬試題含解析_第4頁
吉林省長春市九臺區師范高中、實驗高中2025屆數學高一下期末質量跟蹤監視模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省長春市九臺區師范高中、實驗高中2025屆數學高一下期末質量跟蹤監視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設,為兩條不同的直線,,為兩個不同的平面,給出下列命題:①若,,則;②若,,則;③若,,,則;④若,,則與所成的角和與所成的角相等.其中正確命題的序號是()A.①② B.①④ C.②③ D.②④2.對于任意實數,下列命題中正確的是()A.若,則 B.若,則C.若,則 D.若,則3.已知向量,,且與的夾角為,則()A. B.2 C. D.144.若,則下列不等式中不正確的是()A. B. C. D.5.在三棱錐中,,二面角的大小為,則三棱錐的外接球的表面積為()A. B. C. D.6.邊長為的正三角形中,點在邊上,,是的中點,則()A. B. C. D.7.已知,,,,則下列等式一定成立的是()A. B. C. D.8.在△ABC中,sinA:sinB:sinC=4:3:2,則cosA的值是()A. B. C. D.9.在區間上隨機取一個數,使得的概率為()A. B. C. D.10.已知分別為內角的對邊,若,b=則=()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設()則數列的各項和為________12._______________.13.某工廠甲、乙、丙三個車間生產了同一種產品,數量分別為120件,80件,60件,為了了解它們的產品質量是否存在顯著差異,用分層抽樣的方法抽取了一個容量為n的樣本進行調查,其中從丙車間的產品中抽取了3件,則n=.14.如圖所示,梯形中,,于,,分別是,的中點,將四邊形沿折起(不與平面重合),以下結論①面;②;③.則不論折至何位置都有_______.15.已知圓Ω過點A(5,1),B(5,3),C(﹣1,1),則圓Ω的圓心到直線l:x﹣2y+1=0的距離為_____.16.________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.18.如圖,某快遞小哥從地出發,沿小路以平均速度為20公里小時送快件到處,已知公里,,是等腰三角形,.(1)試問,快遞小哥能否在50分鐘內將快件送到處?(2)快遞小哥出發15分鐘后,快遞公司發現快件有重大問題,由于通訊不暢,公司只能派車沿大路追趕,若汽車的平均速度為60公里小時,問,汽車能否先到達處?19.某科研小組對冬季晝夜溫差大小與某反季節作物種子發芽多少之間的關系進行分析,分別記錄了每天晝夜溫差和每100顆種子的發芽數,其中5天的數據如下,該小組的研究方案是:先從這5組數據中選取3組求線性回歸方程,再用方程對其余的2組數據進行檢驗.日期第1天第2天第3天第4天第5天溫度(℃)101113128發芽數(顆)2326322616(1)求余下的2組數據恰好是不相鄰2天數據的概率;(2)若選取的是第2、3、4天的數據,求關于的線性回歸方程;(3)若由線性回歸方程得到的估計數據與2組檢驗數據的誤差均不超過1顆,則認為得到的線性回歸方程是可靠的,請問(2)中所得的線性回歸方程是否可靠?(參考公式;線性回歸方程中系數計算公式:,,其中、表示樣本的平均值)20.在平面直角坐標系中,已知,,動點滿足條件.(1)求點的軌跡的方程;(2)設點是點關于直線的對稱點,問是否存在點同時滿足條件:①點在曲線上;②三點共線,若存在,求直線的方程;若不存在,請說明理由.21.已知,其中,求:(1);;(2)與的夾角的余弦值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據線面平行的性質和面面垂直的判定可知②④正確.【詳解】對于①,若,,或,故①錯;對于②,過作一個平面,它與平面交于,則,因為,故,因為,故,故②成立;對于③,由面面垂直的性質定理可知前提條件缺少,故③錯;對于④,如圖所示,如果分別于平面斜交,且斜足分別為,在直線上分別截取斜線段、,使得,過分別作平面的垂線,垂足分別為,連接,則分別為與平面所成的角、與平面所成的角,因為,故,所以,故.當分別垂直于時,;當分別平行于時,;故與所成的角和與所成的角相等,故④正確.故選D.【點睛】本題考查空間中的點、線、面的位置關系,正確判斷這些命題的真假的前提是熟悉公理、定理的前提條件,同時需要動態考慮它們的位置關系,觀察是否有不同的情況出現.2、C【解析】

根據是任意實數,逐一對選項進行分析即得。【詳解】由題,當時,,則A錯誤;當,時,,則B錯誤;可知,則有,因此C正確;當時,有,可知C錯誤.故選:C【點睛】本題考查判斷正確命題,是基礎題。3、A【解析】

首先求出、,再根據計算可得;【詳解】解:,,又,且與的夾角為,所以.故選:A【點睛】本題考查平面向量的數量積以及運算律,屬于基礎題.4、C【解析】

,可得,則根據不等式的性質逐一分析選項,A:,,所以成立;B:,則,根據基本不等式以及等號成立的條件則可判斷;C:且,根據可乘性可知結果;D:,根據乘方性可判斷結果.【詳解】A:由題意,不等式,可得,則,,所以成立,所以A是正確的;B:由,則,所以,因為,所以等號不成立,所以成立,所以B是正確的;C:由且,根據不等式的性質,可得,所以C不正確;D:由,可得,所以D是正確的,故選:C.【點睛】本題考查不等式的性質,不等式等號成立的條件,熟記不等式的性質是解題的關鍵,屬于基礎題.5、D【解析】

取AB中點F,SC中點E,設的外心為,外接圓半徑為三棱錐的外接球球心為,由,在四邊形中,設,外接球半徑為,則則可求,表面積可求【詳解】取AB中點F,SC中點E,連接SF,CF,因為則為二面角的平面角,即又設的外心為,外接圓半徑為三棱錐的外接球球心為則面,由在四邊形中,設,外接球半徑為,則則三棱錐的外接球的表面積為故選D【點睛】本題考查二面角,三棱錐的外接球,考查空間想象能力,考查正弦定理及運算求解能力,是中檔題6、D【解析】

,故選D.7、B【解析】試題分析:相除得,又,所以.選B.【考點定位】指數運算與對數運算.8、A【解析】

由正弦定理可得,再結合余弦定理求解即可.【詳解】解:因為在△ABC中,sinA:sinB:sinC=4:3:2,由正弦定理可得,不妨令,由余弦定理可得,故選:A.【點睛】本題考查了正弦定理及余弦定理,重點考查了運算能力,屬基礎題.9、A【解析】則,故概率為.10、D【解析】

由已知利用正弦定理可求的值,根據余弦定理可得,解方程可得的值.【詳解】,,,由正弦定理,可得:,由余弦定理,可得:,解得:,負值舍去.故選.【點睛】本題主要考查了正弦定理,余弦定理在解三角形中的應用,考查了方程思想,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據無窮等比數列的各項和的計算方法,即可求解,得到答案.【詳解】由題意,數列的通項公式為,且,所以數列的各項和為.故答案為:.【點睛】本題主要考查了無窮等比數列的各項和的求解,其中解答中熟記無窮等比數列的各項和的計算方法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.12、2【解析】

利用裂項求和法將化簡為,再求極限即可.【詳解】令...故答案為:【點睛】本題主要考查數列求和中的列項求和,同時考查了極限的求法,屬于中檔題.13、13【解析】(解法1)由分層抽樣得,解得n=13.(解法2)從甲乙丙三個車間依次抽取a,b,c個樣本,則120∶80∶60=a∶b∶3a=6,b=4,所以n=a+b+c=13.14、①②【解析】

根據題意作出折起后的幾何圖形,再根據線面平行的判定定理,線面垂直的判定定理,異面直線的判定定理等知識即可判斷各選項的真假.【詳解】作出折起后的幾何圖形,如圖所示:.因為,分別是,的中點,所以是的中位線,所以.而面,所以面,①正確;無論怎樣折起,始終有,所以面,即有,而,所以,②正確;折起后,面,面,且,故與是異面直線,③錯誤.故答案為:①②.【點睛】本題主要考查線面平行的判定定理,線面垂直的判定定理,異面直線的判定定理等知識的應用,意在考查學生的直觀想象能力和邏輯推理能力,屬于基礎題.15、【解析】

求得線段和線段的垂直平分線,求這兩條垂直平分線的交點即求得圓的圓心,在求的圓心到直線的距離.【詳解】∵A(5,1),B(5,3),C(﹣1,1),∴AB的中點坐標為(5,2),則AB的垂直平分線方程為y=2;BC的中點坐標為(2,2),,則BC的垂直平分線方程為y﹣2=﹣3(x﹣2),即3x+y﹣8=1.聯立,得.∴圓Ω的圓心為Ω(2,2),則圓Ω的圓心到直線l:x﹣2y+1=1的距離為d.故答案為:【點睛】本小題主要考查根據圓上點的坐標求圓心坐標,考查點到直線的距離公式,屬于基礎題.16、【解析】

根據極限的運算法則,合理化簡、運算,即可求解.【詳解】由極限的運算,可得.故答案為:【點睛】本題主要考查了極限的運算法則的應用,其中解答熟記極限的運算法則,準確計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】試題分析:(1)先由平面幾何知識證明,再由線面平行判定定理得結論;(2)先由面面垂直性質定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內,因為AB⊥AD,,所以.又因為平面ABC,平面ABC,所以EF∥平面ABC.(2)因為平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因為平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因為AC平面ABC,所以AD⊥AC.點睛:垂直、平行關系證明中應用轉化與化歸思想的常見類型:(1)證明線面、面面平行,需轉化為證明線線平行;(2)證明線面垂直,需轉化為證明線線垂直;(3)證明線線垂直,需轉化為證明線面垂直.18、(1)快遞小哥不能在50分鐘內將快件送到處.(2)汽車能先到達處.【解析】試題分析:(1)由題意結合圖形,根據正弦定理可得,,求得的長,又,可求出快遞小哥從地到地的路程,再計算小哥到達地的時間,從而問題可得解;(2)由題意,可根據余弦定理分別算出與的長,計算汽車行馳的路程,從而求出汽車到達地所用的時間,計算其與步小哥所用時間相差是否有15分鐘,從而問題可得解.試題解析:(1)(公里),中,由,得(公里)于是,由知,快遞小哥不能在50分鐘內將快件送到處.(2)在中,由,得(公里),在中,,由,得(公里),-由(分鐘)知,汽車能先到達處.點睛:此題主要考查了解三角形中正弦定理、余弦定理在實際生活中的應用,以及關于路程問題的求解運算等方面的知識與技能,屬于中低檔題型,也是??碱}型.在此類問題中,總是正弦定理、余弦定理,以及相關聯的三角函數的知識,所以根據題目條件、圖形進行挖掘,找到與問題銜接處,從而尋找到問題的解決方案.19、(1);(2);(3)線性回歸方程是可靠的.【解析】

(1)用列舉法求出基本事件數,計算所求的概率值;(2)由已知數據求得與,則線性回歸方程可求;(3)利用回歸方程計算與8時的值,再由已知數據作差取絕對值,與1比較大小得結論.【詳解】解:(1)設“余下的2組數據恰好是不相鄰2天數據為事件”,從5組數據中選取3組數據,余下的2組數據共10種情況:,,,,,,,,,.其中事件的有6種,;(2)由數據求得,,且,.代入公式得:,.線性回歸方程為:;(3)當時,,,當時,,.故得到的線性回歸方程是可靠的.【點睛】本題考查了線性回歸方程的求法與應用問題,考查古典概型的概率計算問題,屬于中檔題.20、(1);(2)存在點,直線方程為.【解析】

(1)設,由題意根據兩點間的距離公式即可求解.(2)假設存在點滿足題意,此時直線的方程為:.設,,根據題意可得,求出,再將直線與圓聯立求出,根據向量共線的坐標表示以及點在圓上,求出即可求解.【詳解】(1)設,由得,整理得:,所以點的軌跡方程為.(2)假設存在點滿足題意,此時直線的方程為:.設,.因為與關于直線對稱,所以解得即.由,得,即.此時,,,所以,所以當時,三點共線.若在曲線上,則,整理得,即,所以,即.綜上所述,存在點,滿足條件①②,此時直線方程為.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論