




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省鶴壁市淇濱區鶴壁高中高三假期自主綜合能力測試(三)新高考數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知滿足,,,則在上的投影為()A. B. C. D.22.二項式展開式中,項的系數為()A. B. C. D.3.集合的子集的個數是()A.2 B.3 C.4 D.84.費馬素數是法國大數學家費馬命名的,形如的素數(如:)為費馬索數,在不超過30的正偶數中隨機選取一數,則它能表示為兩個不同費馬素數的和的概率是()A. B. C. D.5.設,,,則()A. B. C. D.6.設、,數列滿足,,,則()A.對于任意,都存在實數,使得恒成立B.對于任意,都存在實數,使得恒成立C.對于任意,都存在實數,使得恒成立D.對于任意,都存在實數,使得恒成立7.設是虛數單位,則“復數為純虛數”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件8.設全集,集合,,則集合()A. B. C. D.9.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.10.已知隨機變量服從正態分布,且,則()A. B. C. D.11.如圖,在正方體中,已知、、分別是線段上的點,且.則下列直線與平面平行的是()A. B. C. D.12.已知,,,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設實數,滿足,則的最大值是______.14.已知函數,若函數有個不同的零點,則的取值范圍是___________.15.函數的定義域為____.16.已知實數,滿足,則的最大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點,平面平面,.(1)求證:平面;(2)求證:平面.18.(12分)交通部門調查在高速公路上的平均車速情況,隨機抽查了60名家庭轎車駕駛員,統計其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.(1)完成下面的列聯表,并據此判斷是否有的把握認為,家庭轎車平均車速超過與駕駛員的性別有關;平均車速超過的人數平均車速不超過的人數合計男性駕駛員女性駕駛員合計(2)根據這些樣本數據來估計總體,隨機調查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數為,假定抽取的結果相互獨立,求的分布列和數學期望.參考公式:其中臨界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82819.(12分)在邊長為的正方形,分別為的中點,分別為的中點,現沿折疊,使三點重合,構成一個三棱錐.(1)判別與平面的位置關系,并給出證明;(2)求多面體的體積.20.(12分)為增強學生的法治觀念,營造“學憲法、知憲法、守憲法”的良好校園氛圍,某學校開展了“憲法小衛士”活動,并組織全校學生進行法律知識競賽.現從全校學生中隨機抽取50名學生,統計他們的競賽成績,已知這50名學生的競賽成績均在[50,100]內,并得到如下的頻數分布表:分數段[50,60)[60,70)[70,80)[80,90)[90,100]人數51515123(1)將競賽成績在內定義為“合格”,競賽成績在內定義為“不合格”.請將下面的列聯表補充完整,并判斷是否有的把握認為“法律知識競賽成績是否合格”與“是否是高一新生”有關?合格不合格合計高一新生12非高一新生6合計(2)在(1)的前提下,按“競賽成績合格與否”進行分層抽樣,從這50名學生中抽取5名學生,再從這5名學生中隨機抽取2名學生,求這2名學生競賽成績都合格的概率.參考公式及數據:,其中.21.(12分)設,(1)求的單調區間;(2)設恒成立,求實數的取值范圍.22.(10分)在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.已知直線的參數方程為(為參數),曲線的極坐標方程為;(1)求直線的直角坐標方程和曲線的直角坐標方程;(2)若直線與曲線交點分別為,,點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點睛】本題考查向量的投影,屬于基礎題.2、D【解析】
寫出二項式的通項公式,再分析的系數求解即可.【詳解】二項式展開式的通項為,令,得,故項的系數為.故選:D【點睛】本題主要考查了二項式定理的運算,屬于基礎題.3、D【解析】
先確定集合中元素的個數,再得子集個數.【詳解】由題意,有三個元素,其子集有8個.故選:D.【點睛】本題考查子集的個數問題,含有個元素的集合其子集有個,其中真子集有個.4、B【解析】
基本事件總數,能表示為兩個不同費馬素數的和只有,,,共有個,根據古典概型求出概率.【詳解】在不超過的正偶數中隨機選取一數,基本事件總數能表示為兩個不同費馬素數的和的只有,,,共有個則它能表示為兩個不同費馬素數的和的概率是本題正確選項:【點睛】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎題.5、A【解析】
先利用換底公式將對數都化為以2為底,利用對數函數單調性可比較,再由中間值1可得三者的大小關系.【詳解】,,,因此,故選:A.【點睛】本題主要考查了利用對數函數和指數函數的單調性比較大小,屬于基礎題.6、D【解析】
取,可排除AB;由蛛網圖可得數列的單調情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數列恒單調遞增,且不存在最大值,故排除AB選項;由蛛網圖可知,存在兩個不動點,且,,因為當時,數列單調遞增,則;當時,數列單調遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點睛】本題考查遞推數列的綜合運用,考查邏輯推理能力,屬于難題.7、D【解析】
結合純虛數的概念,可得,再結合充分條件和必要條件的定義即可判定選項.【詳解】若復數為純虛數,則,所以,若,不妨設,此時復數,不是純虛數,所以“復數為純虛數”是“”的充分不必要條件.故選:D【點睛】本題考查充分條件和必要條件,考查了純虛數的概念,理解充分必要條件的邏輯關系是解題的關鍵,屬于基礎題.8、C【解析】∵集合,,∴點睛:本題是道易錯題,看清所問問題求并集而不是交集.9、D【解析】
結合三視圖可知,該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,則上半部分的半個圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運算求解能力,屬于中檔題.10、C【解析】
根據在關于對稱的區間上概率相等的性質求解.【詳解】,,,.故選:C.【點睛】本題考查正態分布的應用.掌握正態曲線的性質是解題基礎.隨機變量服從正態分布,則.11、B【解析】
連接,使交于點,連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點,連接、,則為的中點,在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.12、B【解析】,選B二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據目標函數的解析式形式,分析目標函數的幾何意義,然后判斷求出目標函數取得最優解的點的坐標,即可求解.【詳解】作出實數,滿足表示的平面區域,如圖所示:由可得,則表示直線在軸上的截距,截距越小,越大.由可得,此時最大為1,故答案為:1.【點睛】本題主要考查線性規劃知識的運用,考查學生的計算能力,考查數形結合的數學思想.14、【解析】
作出函數的圖象及直線,如下圖所示,因為函數有個不同的零點,所以由圖象可知,,,所以.15、【解析】由題意得,解得定義域為.16、【解析】
畫出不等式組表示的平面區域,將目標函數理解為點與構成直線的斜率,數形結合即可求得.【詳解】不等式組表示的平面區域如下所示:因為可以理解為點與構成直線的斜率,數形結合可知,當且僅當目標函數過點時,斜率取得最大值,故的最大值為.故答案為:.【點睛】本題考查目標函數為斜率型的規劃問題,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】
(1)根據,分別是,的中點,即可證明,從而可證平面;(2)先根據為正三角形,且D是的中點,證出,再根據平面平面,得到平面,從而得到,結合,即可得證.【詳解】(1)∵,分別是,的中點∴∵平面,平面∴平面.(2)∵為正三角形,且D是的中點∴∵平面平面,且平面平面,平面∴平面∵平面∴∵且∴∵,平面,且∴平面.【點睛】本題考查直線與平面平行的判定,面面垂直的性質等,解題時要認真審題,注意空間思維能力的培養,中檔題.18、(1)填表見解析;有的把握認為,平均車速超過與性別有關(2)詳見解析【解析】
(1)根據題目所給數據填寫列聯表,計算出的值,由此判斷出有的把握認為,平均車速超過與性別有關.(2)利用二項分布的知識計算出分布列和數學期望.【詳解】(1)平均車速超過的人數平均車速不超過的人數合計男性駕駛員301040女性駕駛員51520合計352560因為,,所以有的把握認為,平均車速超過與性別有關.(2)服從,即,.所以的分布列如下0123的期望【點睛】本小題主要考查列聯表獨立性檢驗,考查二項分布分布列和數學期望,屬于中檔題.19、(1)平行,證明見解析;(2).【解析】
(1)由題意及圖形的翻折規律可知應是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【詳解】(1)證明:因翻折后、、重合,∴應是的一條中位線,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【點睛】本題主要考查線面平行的判定定理,線面垂直的判定定理及錐體的體積公式,屬于基礎題.20、(1)見解析;(2)【解析】
(1)補充完整的列聯表如下:合格不合格合計高一新生121426非高一新生18624合計302050則的觀測值,所以有的把握認為“法律知識競賽成績是否合格”與“是否是高一新生”有關.(2)抽取的5名學生中競賽成績合格的有名學生,記為,競賽成績不合格的有名學生,記為,從這5名學生中隨機抽取2名學生的基本事件有:,共10種,這2名學生競賽成績都合格的基本事件有:,共3種,所以這2名學生競賽成績都合格的概率為.21、(1)單調遞增區間為,單調遞減區間為;(2)【解析】
(1),令,解不等式即可;(2),令得,即,且的最小值為,令,結合即可解決.【詳解】(1),當時,,遞增,當時,,遞減.故的單調遞增區間為,單調遞減區
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浮腫的診斷與鑒別診斷
- 法律咨詢服務中介合同模板
- 城市公交天然氣運輸合同
- 艾滋病防治健康知識講座
- 水痘患者的治療與護理
- 凈業環保水處理設備生產建設項目可行性研究報告寫作模板-備案審批
- 報廢汽車拆解回收再利用項目可行性研究報告寫作模板-備案審批
- 玻璃儀器培訓
- 2024漯河市召陵區中等專業學校工作人員招聘考試及答案
- 2024湖南中德交通技工學校工作人員招聘考試及答案
- 甘肅省衛生健康委公務員考試招聘112人往年題考
- 數字化賦能護理質量管理研究進展與價值共創視角
- 沖壓模具設計與制造工藝考試復習題庫(含答案)
- 2025牡丹江輔警考試題庫
- 2024年新高考廣西高考生物真題試卷及答案
- 2024-2025學年北師大版七年級數學下冊期中模擬卷
- 2025部編人教版小學二年級語文下冊全冊教案
- 電網工程設備材料信息參考價(2024年第四季度)
- 考試失利后的心態調整與復盤
- 2023中國偏頭痛診斷與治療指南
- 2025年度潤滑油產品研發與市場銷售合作協議2篇
評論
0/150
提交評論