




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省贛州市寧都縣三中高三六校第一次聯考新高考數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數是奇函數,則的值為()A.-10 B.-9 C.-7 D.12.如圖所示是某年第一季度五省GDP情況圖,則下列說法中不正確的是()A.該年第一季度GDP增速由高到低排位第3的是山東省B.與去年同期相比,該年第一季度的GDP總量實現了增長C.該年第一季度GDP總量和增速由高到低排位均居同一位的省份有2個D.去年同期浙江省的GDP總量超過了4500億元3.已知函數,,且,則()A.3 B.3或7 C.5 D.5或84.已知函數是偶函數,當時,函數單調遞減,設,,,則的大小關系為()A. B. C. D.5.函數fxA. B.C. D.6.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.7.直線l過拋物線的焦點且與拋物線交于A,B兩點,則的最小值是A.10 B.9 C.8 D.78.已知復數(為虛數單位),則下列說法正確的是()A.的虛部為 B.復數在復平面內對應的點位于第三象限C.的共軛復數 D.9.的展開式中的系數為()A.-30 B.-40 C.40 D.5010.若執行如圖所示的程序框圖,則輸出的值是()A. B. C. D.411.設為等差數列的前項和,若,,則的最小值為()A. B. C. D.12.一個超級斐波那契數列是一列具有以下性質的正整數:從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數列的個數為()A.3 B.4 C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.函數的定義域為____.14.函數的極大值為______.15.在的二項展開式中,x的系數為________.(用數值作答)16.的展開式中,x5的系數是_________.(用數字填寫答案)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點,直線與拋物線交于不同兩點、,直線、與拋物線的另一交點分別為兩點、,連接,點關于直線的對稱點為點,連接、.(1)證明:;(2)若的面積,求的取值范圍.18.(12分)在平面直角坐標系中,點,直線的參數方程為為參數),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)若直線與曲線相交于不同的兩點是線段的中點,當時,求的值.19.(12分)如圖,在四棱錐中底面是菱形,,是邊長為的正三角形,,為線段的中點.求證:平面平面;是否存在滿足的點,使得?若存在,求出的值;若不存在,請說明理由.20.(12分)已知拋物線E:y2=2px(p>0),焦點F到準線的距離為3,拋物線E上的兩個動點A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.線段AB的垂直平分線與x軸交于點C.(1)求拋物線E的方程;(2)求△ABC面積的最大值.21.(12分)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數216362574以最高氣溫位于各區間的頻率估計最高氣溫位于該區間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.22.(10分)在平面直角坐標系xOy中,曲線C的參數方程為(為參數).以原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系.(1)設直線l的極坐標方程為,若直線l與曲線C交于兩點A.B,求AB的長;(2)設M、N是曲線C上的兩點,若,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據分段函數表達式,先求得的值,然后結合的奇偶性,求得的值.【詳解】因為函數是奇函數,所以,.故選:B【點睛】本題主要考查分段函數的解析式、分段函數求函數值,考查數形結合思想.意在考查學生的運算能力,分析問題、解決問題的能力.2、D【解析】
根據折線圖、柱形圖的性質,對選項逐一判斷即可.【詳解】由折線圖可知A、B項均正確,該年第一季度總量和增速由高到低排位均居同一位的省份有江蘇均第一.河南均第四.共2個.故C項正確;.故D項不正確.故選:D.【點睛】本題考查折線圖、柱形圖的識別,考查學生的閱讀能力、數據處理能力,屬于中檔題.3、B【解析】
根據函數的對稱軸以及函數值,可得結果.【詳解】函數,若,則的圖象關于對稱,又,所以或,所以的值是7或3.故選:B.【點睛】本題考查的是三角函數的概念及性質和函數的對稱性問題,屬基礎題4、A【解析】
根據圖象關于軸對稱可知關于對稱,從而得到在上單調遞增且;再根據自變量的大小關系得到函數值的大小關系.【詳解】為偶函數圖象關于軸對稱圖象關于對稱時,單調遞減時,單調遞增又且,即本題正確選項:【點睛】本題考查利用函數奇偶性、對稱性和單調性比較函數值的大小關系問題,關鍵是能夠通過奇偶性和對稱性得到函數的單調性,通過自變量的大小關系求得結果.5、A【解析】
由f12=e-14>0排除選項D;【詳解】由f12=e-14>0,可排除選項D,f-1=-e【點睛】本題通過對多個圖象的選擇考查函數的圖象與性質,屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據函數的定義域、值域、單調性、奇偶性、特殊點以及x→06、B【解析】
還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.7、B【解析】
根據拋物線中過焦點的兩段線段關系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標準方程可知p=2因為直線l過拋物線的焦點,由過拋物線焦點的弦的性質可知所以因為為線段長度,都大于0,由基本不等式可知,此時所以選B【點睛】本題考查了拋物線的基本性質及其簡單應用,基本不等式的用法,屬于中檔題.8、D【解析】
利用的周期性先將復數化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復平面內對應的點為,在第二象限,B錯誤;的共軛復數為,C錯誤;,D正確.故選:D.【點睛】本題考查復數的四則運算,涉及到復數的虛部、共軛復數、復數的幾何意義、復數的模等知識,是一道基礎題.9、C【解析】
先寫出的通項公式,再根據的產生過程,即可求得.【詳解】對二項式,其通項公式為的展開式中的系數是展開式中的系數與的系數之和.令,可得的系數為;令,可得的系數為;故的展開式中的系數為.故選:C.【點睛】本題考查二項展開式中某一項系數的求解,關鍵是對通項公式的熟練使用,屬基礎題.10、D【解析】
模擬程序運行,觀察變量值的變化,得出的變化以4為周期出現,由此可得結論.【詳解】;如此循環下去,當時,,此時不滿足,循環結束,輸出的值是4.故選:D.【點睛】本題考查程序框圖,考查循環結構.解題時模擬程序運行,觀察變量值的變化,確定程序功能,可得結論.11、C【解析】
根據已知條件求得等差數列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點睛】本小題主要考查等差數列通項公式和前項和公式的基本量計算,考查等差數列前項和最值的求法,屬于基礎題.12、A【解析】
根據定義,表示出數列的通項并等于2020.結合的正整數性質即可確定解的個數.【詳解】由題意可知首項為2,設第二項為,則第三項為,第四項為,第五項為第n項為且,則,因為,當的值可以為;即有3個這種超級斐波那契數列,故選:A.【點睛】本題考查了數列新定義的應用,注意自變量的取值范圍,對題意理解要準確,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意得,解得定義域為.14、【解析】
先求函的定義域,再對函數進行求導,再解不等式得單調區間,進而求得極值點,即可求出函數的極大值.【詳解】函數,,,令得,,當時,,函數單調遞增;當時,,函數單調遞減,當時,函數取到極大值,極大值為.故答案為:.【點睛】本題考查利用導數研究函數的極值,考查函數與方程思想、轉化與化歸思想,考查運算求解能力,求解時注意定義域優先法則的應用.15、-40【解析】
由題意,可先由公式得出二項展開式的通項,再令10-3r=1,得r=3即可得出x項的系數【詳解】的二項展開式的通項公式為,r=0,1,2,3,4,5,令,所以的二項展開式中x項的系數為.故答案為:-40.【點睛】本題考查二項式定理的應用,解題關鍵是靈活掌握二項式展開式通項的公式,屬于基礎題.16、-189【解析】由二項式定理得,令r=5得x5的系數是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)設點、,求出直線、的方程,與拋物線的方程聯立,求出點、的坐標,利用直線、的斜率相等證明出;(2)設點到直線、的距離分別為、,求出,利用相似得出,可得出的邊上的高,并利用弦長公式計算出,即可得出關于的表達式,結合不等式可解出實數的取值范圍.【詳解】(1)設點、,則,直線的方程為:,由,消去并整理得,由韋達定理可知,,,代入直線的方程,得,解得,同理,可得,,,,代入得,因此,;(2)設點到直線、的距離分別為、,則,由(1)知,,,,,,同理,得,,由,整理得,由韋達定理得,,,得,設點到直線的高為,則,,,,解得,因此,實數的取值范圍是.【點睛】本題考查直線與直線平行的證明,考查實數的取值范圍的求法,考查拋物線、直線方程、韋達定理、弦長公式、直線的斜率等基礎知識,考查運算求解能力,考查數形結合思想,是難題.18、(1);(2).【解析】
(1)在已知極坐標方程兩邊同時乘以ρ后,利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2可得曲線C的直角坐標方程;(2)聯立直線l的參數方程與x2=4y由韋達定理以及參數的幾何意義和弦長公式可得弦長與已知弦長相等可解得.【詳解】解:(1)在ρ+ρcos2θ=8sinθ中兩邊同時乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,∴x2+y2+x2﹣y2=8y,即x2=4y,所以曲線C的直角坐標方程為:x2=4y.(2)聯立直線l的參數方程與x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,設A,B兩點對應的參數分別為t1,t2,由△=16sin2α﹣16cos2α>0,得sinα>,t1+t2=,由|PM|=,所以20sin2α+9sinα﹣20=0,解得sinα=或sinα=﹣(舍去),所以sinα=.【點睛】本題考查了簡單曲線的極坐標方程,屬中檔題.19、證明見解析;2.【解析】
利用面面垂直的判定定理證明即可;由,知,所以可得出,因此,的充要條件是,繼而得出的值.【詳解】解:證明:因為是正三角形,為線段的中點,所以.因為是菱形,所以.因為,所以是正三角形,所以,而,所以平面.又,所以平面.因為平面,所以平面平面.由,知.所以,,.因此,的充要條件是,所以,.即存在滿足的點,使得,此時.【點睛】本題主要考查平面與平面垂直的判定、三棱錐的體積等基礎知識;考查空間想象能力、運算求解能力、推理論證能力和創新意識;考查化歸與轉化、函數與方程等數學思想,屬于難題.20、(1)y2=6x(2).【解析】
(1)根據拋物線定義,寫出焦點坐標和準線方程,列方程即可得解;(2)根據中點坐標表示出|AB|和點到直線的距離,得出面積,利用均值不等式求解最大值.【詳解】(1)拋物線E:y2=2px(p>0),焦點F(,0)到準線x的距離為3,可得p=3,即有拋物線方程為y2=6x;(2)設線段AB的中點為M(x0,y0),則,y0,kAB,則線段AB的垂直平分線方程為y﹣y0(x﹣2),①可得x=5,y=0是①的一個解,所以AB的垂直平分線與x軸的交點C為定點,且點C(5,0),由①可得直線AB的方程為y﹣y0(x﹣2),即x(y﹣y0)+2②代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02=0③,由題意y1,y2是方程③的兩個實根,且y1≠y2,所以△=1y02﹣1(2y02﹣12)=﹣1y02+18>0,解得﹣2y0<2,|AB|,又C(5,0)到線段AB的距離h=|CM|,所以S△ABC|AB|h?,當且僅當9+y02=21﹣2y02,即y0=±,A(,),B(,),或A(,),B(,)時等號成立,所以S△ABC的最大值為.【點睛】此題考查根據焦點和準線關系求拋物線方程,根據直線與拋物線位置關系求解三角形面積的最值,表示三角形的面積關系常涉及韋達定理整體代入,拋物線中需要考慮設點坐標的技巧,處理最值問題常用函數單調性求解或均值不等式求最值.21、(1).(2).【解析】
(1)由前三年六月份各天的最高氣溫數據,求出最高氣溫位于區間[20,25)和最高氣溫低于20的天數,由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當溫度大于等于25℃時,需求量為500,求出Y=900元;當溫度在[20,25)℃時,需求量為300,求出Y=300元;當溫度低于20℃時,需求量為200,求出Y=﹣100元,從而當溫度大于等于20時,Y>0,由此能估計估計Y大于零的概率.【詳解】解:(1)由前
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幾何概率面試真題及答案
- 《河流的水文特征》課件
- 山東計算機二級考試單選題100道及答案
- 《胰島素治療的合理應用》課件
- 振動的描述課件魯科版選修:波動的奧秘課件人教版選修
- 《神經內科疾病教學》課件
- 《隧道施工安全技術》課件
- 2025年浙江省申論B真題答案及解析
- 史料研讀教學法的實際應用研究
- 《臨床診斷影像學基礎》課件
- 生態環境數字化治理的杭州創新與經驗
- 建筑起重信號司索工試題庫(附答案)
- Unit1-Unit3 (單元測試)-2024-2025學年人教PEP版(2024)英語三年級上冊
- 一起干活安全協議書
- 六上 Unit 1 Part A 課件人教版六年級英語
- 從心理學角度談醫患溝通
- 常用焊管規格表
- DL∕T 5161.17-2018 電氣裝置安裝工程質量檢驗及評定規程 第17部分:電氣照明裝置施工質量檢驗
- 廣西壯族自治區南寧市2023-2024學年八年級下學期7月期末歷史試題(無答案)
- DL-T5344-2018電力光纖通信工程驗收規范
- 2024年上海市公安機關文職輔警、公安機關勤務輔警、檢察系統輔助文員招聘筆試參考題庫含答案解析
評論
0/150
提交評論