陜西省師范大學附屬中學高三最后一卷新高考數學試卷及答案解析_第1頁
陜西省師范大學附屬中學高三最后一卷新高考數學試卷及答案解析_第2頁
陜西省師范大學附屬中學高三最后一卷新高考數學試卷及答案解析_第3頁
陜西省師范大學附屬中學高三最后一卷新高考數學試卷及答案解析_第4頁
陜西省師范大學附屬中學高三最后一卷新高考數學試卷及答案解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省師范大學附屬中學高三最后一卷新高考數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為得到函數的圖像,只需將函數的圖像()A.向右平移個長度單位 B.向右平移個長度單位C.向左平移個長度單位 D.向左平移個長度單位2.如圖,在平面四邊形中,滿足,且,沿著把折起,使點到達點的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.3.用電腦每次可以從區間內自動生成一個實數,且每次生成每個實數都是等可能性的.若用該電腦連續生成3個實數,則這3個實數都小于的概率為()A. B. C. D.4.如圖所示是某年第一季度五省GDP情況圖,則下列說法中不正確的是()A.該年第一季度GDP增速由高到低排位第3的是山東省B.與去年同期相比,該年第一季度的GDP總量實現了增長C.該年第一季度GDP總量和增速由高到低排位均居同一位的省份有2個D.去年同期浙江省的GDP總量超過了4500億元5.設f(x)是定義在R上的偶函數,且在(0,+∞)單調遞減,則()A. B.C. D.6.已知水平放置的△ABC是按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.7.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.8.若,則,,,的大小關系為()A. B.C. D.9.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值10.我國著名數學家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內容是“每個大于的偶數可以表示為兩個素數的和”(注:如果一個大于的整數除了和自身外無其他正因數,則稱這個整數為素數),在不超過的素數中,隨機選取個不同的素數、,則的概率是()A. B. C. D.11.已知數列中,,(),則等于()A. B. C. D.212.已知復數,則的虛部為()A.-1 B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.設,滿足約束條件,則的最大值為______.14.已知a,b均為正數,且,的最小值為________.15.在平面直角坐標系中,雙曲線的右準線與漸近線的交點在拋物線上,則實數的值為________.16.設,滿足約束條件,若的最大值是10,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某企業生產一種產品,從流水線上隨機抽取件產品,統計其質量指標值并繪制頻率分布直方圖(如圖1):規定產品的質量指標值在的為劣質品,在的為優等品,在的為特優品,銷售時劣質品每件虧損元,優等品每件盈利元,特優品每件盈利元,以這件產品的質量指標值位于各區間的頻率代替產品的質量指標值位于該區間的概率.(1)求每件產品的平均銷售利潤;(2)該企業主管部門為了解企業年營銷費用(單位:萬元)對年銷售量(單位:萬件)的影響,對該企業近年的年營銷費用和年銷售量,數據做了初步處理,得到的散點圖(如圖2)及一些統計量的值.表中,,,.根據散點圖判斷,可以作為年銷售量(萬件)關于年營銷費用(萬元)的回歸方程.①求關于的回歸方程;②用所求的回歸方程估計該企業每年應投入多少營銷費,才能使得該企業的年收益的預報值達到最大?(收益銷售利潤營銷費用,取)附:對于一組數據,,,,其回歸直線的斜率和截距的最小二乘估計分別為,.18.(12分)在直角坐標系中,已知點,若以線段為直徑的圓與軸相切.(1)求點的軌跡的方程;(2)若上存在兩動點(A,B在軸異側)滿足,且的周長為,求的值.19.(12分)選修4-5:不等式選講已知函數.(1)設,求不等式的解集;(2)已知,且的最小值等于,求實數的值.20.(12分)已知函數(1)當時,證明,在恒成立;(2)若在處取得極大值,求的取值范圍.21.(12分)隨著電子閱讀的普及,傳統紙質媒體遭受到了強烈的沖擊.某雜志社近9年來的紙質廣告收入如下表所示:根據這9年的數據,對和作線性相關性檢驗,求得樣本相關系數的絕對值為0.243;根據后5年的數據,對和作線性相關性檢驗,求得樣本相關系數的絕對值為0.984.(1)如果要用線性回歸方程預測該雜志社2019年的紙質廣告收入,現在有兩個方案,方案一:選取這9年數據進行預測,方案二:選取后5年數據進行預測.從實際生活背景以及線性相關性檢驗的角度分析,你覺得哪個方案更合適?附:相關性檢驗的臨界值表:(2)某購物網站同時銷售某本暢銷書籍的紙質版本和電子書,據統計,在該網站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質版本和電子書同時購買的讀者比例為,現用此統計結果作為概率,若從上述讀者中隨機調查了3位,求購買電子書人數多于只購買紙質版本人數的概率.22.(10分)已知數列是各項均為正數的等比數列,數列為等差數列,且,,.(1)求數列與的通項公式;(2)求數列的前項和;(3)設為數列的前項和,若對于任意,有,求實數的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】,所以要的函數的圖象,只需將函數的圖象向左平移個長度單位得到,故選D2、C【解析】

過作于,連接,易知,,從而可證平面,進而可知,當最大時,取得最大值,取的中點,可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當最大時,取得最大值,取的中點,則,所以,因為,所以點在以為焦點的橢圓上(不在左右頂點),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點睛】本題考查三棱錐體積的最大值,考查學生的空間想象能力與計算求解能力,屬于中檔題.3、C【解析】

由幾何概型的概率計算,知每次生成一個實數小于1的概率為,結合獨立事件發生的概率計算即可.【詳解】∵每次生成一個實數小于1的概率為.∴這3個實數都小于1的概率為.故選:C.【點睛】本題考查獨立事件同時發生的概率,考查學生基本的計算能力,是一道容易題.4、D【解析】

根據折線圖、柱形圖的性質,對選項逐一判斷即可.【詳解】由折線圖可知A、B項均正確,該年第一季度總量和增速由高到低排位均居同一位的省份有江蘇均第一.河南均第四.共2個.故C項正確;.故D項不正確.故選:D.【點睛】本題考查折線圖、柱形圖的識別,考查學生的閱讀能力、數據處理能力,屬于中檔題.5、D【解析】

利用是偶函數化簡,結合在區間上的單調性,比較出三者的大小關系.【詳解】是偶函數,,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數的奇偶性和單調性比較大小,屬于基礎題.6、A【解析】

先根據已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A【點睛】本題主要考查斜二測畫法的定義和三角形面積的計算,意在考察學生對這些知識的掌握水平和分析推理能力.7、B【解析】

由題意得出的值,進而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計算較為方便,考查計算能力,屬于基礎題.8、D【解析】因為,所以,因為,,所以,.綜上;故選D.9、D【解析】

A.通過線面的垂直關系可證真假;B.根據線面平行可證真假;C.根據三棱錐的體積計算的公式可證真假;D.根據列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內.10、B【解析】

先列舉出不超過的素數,并列舉出所有的基本事件以及事件“在不超過的素數中,隨機選取個不同的素數、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素數有:、、、、、,在不超過的素數中,隨機選取個不同的素數,所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過的素數中,隨機選取個不同的素數、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點睛】本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎題.11、A【解析】

分別代值計算可得,觀察可得數列是以3為周期的周期數列,問題得以解決.【詳解】解:∵,(),

…,

∴數列是以3為周期的周期數列,

故選:A.【點睛】本題考查數列的周期性和運用:求數列中的項,考查運算能力,屬于基礎題.12、A【解析】

分子分母同乘分母的共軛復數即可.【詳解】,故的虛部為.故選:A.【點睛】本題考查復數的除法運算,考查學生運算能力,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、29【解析】

由約束條件作出可行域,化目標函數為以原點為圓心的圓,數形結合得到最優解,聯立方程組求得最優解的坐標,代入目標函數得答案.【詳解】由約束條件作出可行域如圖:聯立,解得,目標函數是以原點為圓心,以為半徑的圓,由圖可知,此圓經過點A時,半徑最大,此時也最大,最大值為.所以本題答案為29.【點睛】線性規劃問題,首先明確可行域對應的是封閉區域還是開放區域、分界線是實線還是虛線,其次確定目標函數的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離等等,最后結合圖形確定目標函數最值取法、值域范圍.14、【解析】

本題首先可以根據將化簡為,然后根據基本不等式即可求出最小值.【詳解】因為,所以,當且僅當,即、時取等號,故答案為:.【點睛】本題考查根據基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉化思想,是中檔題.15、【解析】

求出雙曲線的右準線與漸近線的交點坐標,并將該交點代入拋物線的方程,即可求出實數的方程.【詳解】雙曲線的半焦距為,則雙曲線的右準線方程為,漸近線方程為,所以,該雙曲線右準線與漸近線的交點為.由題意得,解得.故答案為:.【點睛】本題考查利用拋物線上的點求參數,涉及到雙曲線的準線與漸近線方程的應用,考查計算能力,屬于中等題.16、【解析】

畫出不等式組表示的平面區域,數形結合即可容易求得結果.【詳解】畫出不等式組表示的平面區域如下所示:目標函數可轉化為與直線平行,數形結合可知當且僅當目標函數過點,取得最大值,故可得,解得.故答案為:.【點睛】本題考查由目標函數的最值求參數值,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)元.(2)①②萬元【解析】

(1)每件產品的銷售利潤為,由已知可得的取值,由頻率分布直方圖可得劣質品、優等品、特優品的概率,從而可得的概率分布列,依期望公式計算出期望即為平均銷售利潤;(2)①對取自然對數,得,令,,,則,這就是線性回歸方程,由所給公式數據計算出系數,得線性回歸方程,從而可求得;②求出收益,可設換元后用導數求出最大值.【詳解】解:(1)設每件產品的銷售利潤為,則的可能取值為,,.由頻率分布直方圖可得產品為劣質品、優等品、特優品的概率分別為、、.所以;;.所以的分布列為所以(元).即每件產品的平均銷售利潤為元.(2)①由,得,令,,,則,由表中數據可得,則,所以,即,因為取,所以,故所求的回歸方程為.②設年收益為萬元,則令,則,,當時,,當時,,所以當,即時,有最大值.即該企業每年應該投入萬元營銷費,能使得該企業的年收益的預報值達到最大,最大收益為萬元.【點睛】本題考查頻率分布直方圖,考查隨機變量概率分布列與期望,考查求線性回歸直線方程,及回歸方程的應用.在求指數型回歸方程時,可通過取對數的方法轉化為求線性回歸直線方程,然后再求出指數型回歸方程.18、(1);(2)【解析】

(1)設,則由題設條件可得,化簡后可得軌跡的方程.(2)設直線,聯立直線方程和拋物線方程后利用韋達定理化簡并求得,結合焦半徑公式及弦長公式可求的值及的長.【詳解】(1)設,則圓心的坐標為,因為以線段為直徑的圓與軸相切,所以,化簡得的方程為.(2)由題意,設直線,聯立得,設(其中)所以,,且,因為,所以,,所以,故或(舍),直線,因為的周長為所以.即,因為.又,所以,解得,所以.【點睛】本題考查曲線方程以及拋物線中的弦長計算,還涉及到向量的數量積.一般地,拋物線中的弦長問題,一般可通過聯立方程組并消元得到關于或的一元二次方程,再把已知等式化為關于兩個的交點橫坐標或縱坐標的關系式,該關系中含有或,最后利用韋達定理把關系式轉化為某一個變量的方程.本題屬于中檔題.19、(1)(2)【解析】

(1)把f(x)去絕對值寫成分段函數的形式,分類討論,分別求得解集,綜合可得結論.(2)把f(x)去絕對值寫成分段函數,畫出f(x)的圖像,找出利用條件求得a的值.【詳解】(1)時,.當時,即為,解得.當時,,解得.當時,,解得.綜上,的解集為.(2).,由的圖象知,,.【點睛】本題主要考查含絕對值不等式的解法及含絕對值的函數的最值問題,體現了分類討論的數學思想,屬于中檔題20、(1)證明見解析(2)【解析】

(1)根據,求導,令,用導數法求其最小值.設研究在處左正右負,求導,分,,三種情況討論求解.【詳解】(1)因為,所以,令,則,所以是的增函數,故,即.因為所以,①當時,,所以函數在上單調遞增.若,則若,則所以函數的單調遞增區間是,單調遞減區間是,所以在處取得極小值,不符合題意,②當時,所以函數在上單調遞減.若,則若,則所以的單調遞減區間是,單調遞增區間是,所以在處取得極大值,符合題意.③當時,,使得,即,但當時,即所以函數在上單調遞減,所以,即函數)在上單調遞減,不符合題意綜上所述,的取值范圍是【點睛】本題主要考查導數與函數的單調性和極值,還考查了轉化化歸的思想和運算求解的能力,屬于難題.21、(1)選取方案二更合適;(2)【解析】

(1)可以預見,2019年的紙質廣告收入會接著下跌,前四年的增長趨勢已經不能作為預測后續數據的依據,而后5年的數據得到的相關系數的絕對值,所以有的把握認為與具有線性相關關系,從而可得結論;(2)求得購買電子書的概率為,只購買紙質書的概率為,購買電子書人數多于只購買紙質書人數有兩種情況:3人購買電子書,2人購買電子書一人只購買紙質書,由此能求出購買電子書人數多于只購買紙質版本人數的概率.【詳解】(1)選取方案二更合適,理由如下:①題中介紹

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論